
Flow in porous media is a very complex phenomenon and as such can-
not be described as explicitly as flow through pipes or conduits. It is
rather easy to measure the length and diameter of a pipe and compute its
flow capacity as a function of pressure; in porous media, however, flow
is different in that there are no clear-cut flow paths that lend themselves
to measurement.

The analysis of fluid flow in porous media has evolved throughout
the years along two fronts—the experimental and the analytical.
Physicists, engineers, hydrologists, and the like have examined exper-
imentally the behavior of various fluids as they flow through porous
media ranging from sand packs to fused Pyrex glass. On the basis of
their analyses, they have attempted to formulate laws and correlations
that can then be utilized to make analytical predictions for similar
systems.

The main objective of this chapter is to present the mathematical rela-
tionships that are designed to describe the flow behavior of the reservoir
fluids. The mathematical forms of these relationships will vary depend-
ing upon the characteristics of the reservoir. The primary reservoir char-
acteristics that must be considered include:

• Types of fluids in the reservoir
• Flow regimes
• Reservoir geometry
• Number of flowing fluids in the reservoir
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TYPES OF FLUIDS

The isothermal compressibility coefficient is essentially the controlling
factor in identifying the type of the reservoir fluid. In general, reservoir
fluids are classified into three groups:

• Incompressible fluids
• Slightly compressible fluids
• Compressible fluids

As described in Chapter 2, the isothermal compressibility coeffi-
cient c is described mathematically by the following two equivalent
expressions:

• In terms of fluid volume:

• In terms of fluid density:

where V and ρ are the volume and density of the fluid, respectively.

Incompressible Fluids

An incompressible fluid is defined as the fluid whose volume (or den-
sity) does not change with pressure, i.e.:

Incompressible fluids do not exist; this behavior, however, may be
assumed in some cases to simplify the derivation and the final form of
many flow equations.
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Slightly Compressible Fluids

These “slightly” compressible fluids exhibit small changes in volume,
or density, with changes in pressure. Knowing the volume Vref of a
slightly compressible liquid at a reference (initial) pressure pref, the
changes in the volumetric behavior of this fluid as a function of pressure
p can be mathematically described by integrating Equation 6-1 to give:

where p = pressure, psia
V = volume at pressure p, ft3

pref = initial (reference) pressure, psia
Vref = fluid volume at initial (reference) pressure, psia

The ex may be represented by a series expansion as:

Because the exponent x [which represents the term c (pref−p)] is very
small, the ex term can be approximated by truncating Equation 6-4 to:

ex = 1 + x (6-5)

Combining Equation 6-5 with Equation 6-3 gives:

V = Vref [1 + c (pref − p)] (6-6)

A similar derivation is applied to Equation 6-2 to give:

ρ = ρref [1 − c (pref − p)] (6-7)
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where V = volume at pressure p
ρ = density at pressure p

Vref = volume at initial (reference) pressure pref

ρref = density at initial (reference) pressure pref

It should be pointed out that crude oil and water systems fit into this
category.

Compressible Fluids

These are fluids that experience large changes in volume as a function
of pressure. All gases are considered compressible fluids. The truncation
of the series expansion, as given by Equation 6-5, is not valid in this cat-
egory and the complete expansion as given by Equation 6-4 is used. As
shown previously in Chapter 2 in Equation 2-45, the isothermal com-
pressibility of any compressible fluid is described by the following
expression:

Figures 6-1 and 6-2 show schematic illustrations of the volume and
density changes as a function of pressure for the three types of fluids.

FLOW REGIMES

There are basically three types of flow regimes that must be recog-
nized in order to describe the fluid flow behavior and reservoir pressure
distribution as a function of time. There are three flow regimes:

• Steady-state flow
• Unsteady-state flow
• Pseudosteady-state flow

Steady-State Flow

The flow regime is identified as a steady-state flow if the pressure at
every location in the reservoir remains constant, i.e., does not change
with time. Mathematically, this condition is expressed as:

c
p z
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Figure 6-1. Pressure-volume relationship.

Figure 6-2. Fluid density versus pressure for different fluid types.



The above equation states that the rate of change of pressure p with
respect to time t at any location i is zero. In reservoirs, the steady-state
flow condition can only occur when the reservoir is completely recharged
and supported by strong aquifer or pressure maintenance operations.

Unsteady-State Flow

The unsteady-state flow (frequently called transient flow) is defined as
the fluid flowing condition at which the rate of change of pressure with
respect to time at any position in the reservoir is not zero or constant.
This definition suggests that the pressure derivative with respect to time
is essentially a function of both position i and time t, thus

(6-10)

Pseudosteady-State Flow

When the pressure at different locations in the reservoir is declining
linearly as a function of time, i.e., at a constant declining rate, the flow-
ing condition is characterized as the pseudosteady-state flow. Mathemati-
cally, this definition states that the rate of change of pressure with respect
to time at every position is constant, or

It should be pointed out that the pseudosteady-state flow is commonly
referred to as semisteady-state flow and quasisteady-state flow.

Figure 6-3 shows a schematic comparison of the pressure declines as a
function of time of the three flow regimes.

RESERVOIR GEOMETRY

The shape of a reservoir has a significant effect on its flow behavior.
Most reservoirs have irregular boundaries and a rigorous mathematical
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description of geometry is often possible only with the use of numeri-
cal simulators. For many engineering purposes, however, the actual
flow geometry may be represented by one of the following flow
geometries:

• Radial flow
• Linear flow
• Spherical and hemispherical flow

Radial Flow

In the absence of severe reservoir heterogeneities, flow into or away
from a wellbore will follow radial flow lines from a substantial distance
from the wellbore. Because fluids move toward the well from all direc-
tions and coverage at the wellbore, the term radial flow is given to char-
acterize the flow of fluid into the wellbore. Figure 6-4 shows idealized
flow lines and iso-potential lines for a radial flow system.
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Figure 6-3. Flow regimes.



Linear Flow

Linear flow occurs when flow paths are parallel and the fluid flows in a
single direction. In addition, the cross-sectional area to flow must be con-
stant. Figure 6-5 shows an idealized linear flow system. A common appli-
cation of linear flow equations is the fluid flow into vertical hydraulic
fractures as illustrated in Figure 6-6.

Spherical and Hemispherical Flow

Depending upon the type of wellbore completion configuration, it is
possible to have a spherical or hemispherical flow near the wellbore. A
well with a limited perforated interval could result in spherical flow in
the vicinity of the perforations as illustrated in Figure 6-7. A well that
only partially penetrates the pay zone, as shown in Figure 6-8, could
result in hemispherical flow. The condition could arise where coning of
bottom water is important.
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Figure 6-5. Linear flow.

Figure 6-6. Ideal linear flow into vertical fracture.

NUMBER OF FLOWING FLUIDS IN THE RESERVOIR

The mathematical expressions that are used to predict the volumetric
performance and pressure behavior of the reservoir vary in forms and
complexity depending upon the number of mobile fluids in the reservoir.
There are generally three cases of flowing systems:



• Single-phase flow (oil, water, or gas)
• Two-phase flow (oil-water, oil-gas, or gas-water)
• Three-phase flow (oil, water, and gas)

The description of fluid flow and subsequent analysis of pressure data
becomes more difficult as the number of mobile fluids increases.

FLUID FLOW EQUATIONS

The fluid flow equations that are used to describe the flow behavior in
a reservoir can take many forms depending upon the combination of
variables presented previously (i.e., types of flow, types of fluids, etc.).
By combining the conservation of mass equation with the transport equa-
tion (Darcy’s equation) and various equations-of-state, the necessary
flow equations can be developed. Since all flow equations to be consid-
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Figure 6-7. Spherical flow due to limited entry.

Figure 6-8. Hemispherical flow in a partially penetrating well.



ered depend on Darcy’s Law, it is important to consider this transport
relationship first.

Darcy’s Law

The fundamental law of fluid motion in porous media is Darcy’s Law.
The mathematical expression developed by Henry Darcy in 1856 states
the velocity of a homogeneous fluid in a porous medium is proportional
to the pressure gradient and inversely proportional to the fluid viscosity.
For a horizontal linear system, this relationship is:

ν is the apparent velocity in centimeters per second and is equal to
q/A, where q is the volumetric flow rate in cubic centimeters per second
and A is total cross-sectional area of the rock in square centimeters. In
other words, A includes the area of the rock material as well as the area
of the pore channels. The fluid viscosity, μ, is expressed in centipoise
units, and the pressure gradient, dp/dx, is in atmospheres per centimeter,
taken in the same direction as ν and q. The proportionality constant, k, is
the permeability of the rock expressed in Darcy units.

The negative sign in Equation 6-12 is added because the pressure gra-
dient is negative in the direction of flow as shown in Figure 6-9.

For a horizontal-radial system, the pressure gradient is positive (see
Figure 6-10) and Darcy’s equation can be expressed in the following
generalized radial form: 

where qr = volumetric flow rate at radius r
Ar = cross-sectional area to flow at radius r

(∂p/∂r)r = pressure gradient at radius r
ν = apparent velocity at radius r

The cross-sectional area at radius r is essentially the surface area of a
cylinder. For a fully penetrated well with a net thickness of h, the cross-
sectional area Ar is given by:

Ar = 2 πrh
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Darcy’s Law applies only when the following conditions exist:

• Laminar (viscous) flow
• Steady-state flow
• Incompressible fluids
• Homogeneous formation

For turbulent flow, which occurs at higher velocities, the pressure gra-
dient increases at a greater rate than does the flow rate and a special
modification of Darcy’s equation is needed. When turbulent flow exists,
the application of Darcy’s equation can result in serious errors. Modifica-
tions for turbulent flow will be discussed later in this chapter.

STEADY-STATE FLOW

As defined previously, steady-state flow represents the condition that
exists when the pressure throughout the reservoir does not change with
time. The applications of the steady-state flow to describe the flow
behavior of several types of fluid in different reservoir geometries are
presented below. These include:
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• Linear flow of incompressible fluids
• Linear flow of slightly compressible fluids
• Linear flow of compressible fluids
• Radial flow of incompressible fluids
• Radial flow of slightly compressible fluids
• Radial flow of compressible fluids
• Multiphase flow

Linear Flow of Incompressible Fluids

In the linear system, it is assumed the flow occurs through a constant
cross-sectional area A, where both ends are entirely open to flow. It is
also assumed that no flow crosses the sides, top, or bottom as shown in
Figure 6-11. 
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Figure 6-10. Pressure gradient in radial flow.



If an incompressible fluid is flowing across the element dx, then the
fluid velocity v and the flow rate q are constants at all points. The flow
behavior in this system can be expressed by the differential form of
Darcy’s equation, i.e., Equation 6-12. Separating the variables of Equa-
tion 6-12 and integrating over the length of the linear system gives:

or:

It is desirable to express the above relationship in customary field
units, or:

where q = flow rate, bbl/day
k = absolute permeability, md
p = pressure, psia
μ = viscosity, cp
L = distance, ft
A = cross-sectional area, ft2

q
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Figure 6-11. Linear flow model.



Example 6-1

An incompressible fluid flows in a linear porous media with the fol-
lowing properties:

L = 2000 ft h = 20′ width = 300′
k = 100 md � = 15% μ = 2 cp

p1 = 2000 psi p2 = 1990 psi

Calculate:

a. Flow rate in bbl/day
b. Apparent fluid velocity in ft/day
c. Actual fluid velocity in ft/day

Solution

Calculate the cross-sectional area A:

A = (h) (width) = (20) (300) = 6000 ft2

a. Calculate the flow rate from Equation 6-14:

b. Calculate the apparent velocity:

c. Calculate the actual fluid velocity:

The difference in the pressure (p1−p2) in Equation 6-14 is not the only
driving force in a tilted reservoir. The gravitational force is the other
important driving force that must be accounted for to determine the
direction and rate of flow. The fluid gradient force (gravitational force) is
always directed vertically downward while the force that results from an
applied pressure drop may be in any direction. The force causing flow

v
q
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would then be the vector sum of these two. In practice, we obtain this
result by introducing a new parameter, called fluid potential, which has
the same dimensions as pressure, e.g., psi. Its symbol is Φ. The fluid
potential at any point in the reservoir is defined as the pressure at that
point less the pressure that would be exerted by a fluid head extending to
an arbitrarily assigned datum level. Letting Δzi be the vertical distance
from a point i in the reservoir to this datum level

where ρ is the density in lb/ft3.

Expressing the fluid density in gm/cc in Equation 6-15 gives:

Φi = pi − 0.433 γ Δzi (6-16)

where Φi = fluid potential at point i, psi
pi = pressure at point i, psi

Δzi = vertical distance from point i to the selected datum level
ρ = fluid density, lb/ft3

γ = fluid density, gm/cm3

The datum is usually selected at the gas-oil contact, oil-water contact,
or at the highest point in formation. In using Equations 6-15 or 6-16 to
calculate the fluid potential Φi at location i, the vertical distance Δzi is
assigned as a positive value when the point i is below the datum level
and as a negative when it is above the datum level, i.e.:

If point i is above the datum level:

and

Φi = pi − 0.433 γ Δzi

If point i is below the datum level:
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and

Φi = pi − 0.433 γ Δzi

Applying the above-generalized concept to Darcy’s equation (Equa-
tion 6-14) gives:

It should be pointed out that the fluid potential drop (Φ1 − Φ2) is equal
to the pressure drop (p1 − p2) only when the flow system is horizontal.

Example 6-2

Assume that the porous media with the properties as given in the pre-
vious example is tilted with a dip angle of 5° as shown in Figure 6-12.
The incompressible fluid has a density of 42 lb/ft3. Resolve Example 6-1
using this additional information.

Solution

Step 1. For the purpose of illustrating the concept of fluid potential,
select the datum level at half the vertical distance between the
two points, i.e., at 87.15 feet, as shown in Figure 6-12.

Step 2. Calculate the fluid potential at Points 1 and 2.

Since Point 1 is below the datum level, then:

Since Point 2 is above the datum level, then:

Because Φ2 > Φ1, the fluid flows downward from Point 2 to
Point 1. The difference in the fluid potential is:

ΔΦ = 2015.42 − 1974.58 = 40.84 psi
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• Notice, if we select Point 2 for the datum level, then

The above calculations indicate that regardless of the position
of the datum level, the flow is downward from 2 to 1 with:

ΔΦ = 1990 − 1949.16 = 40.84 psi

Step 3. Calculate the flow rate

q bbl day= =( . )( )( )( . )
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. /
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Step 4. Calculate the velocity:

Linear Flow of Slightly Compressible Fluids

Equation 6-6 describes the relationship that exists between pressure
and volume for slightly compressible fluids, or:

V = Vref [1 + c (pref − p)]

The above equation can be modified and written in terms of flow rate as:

q = qref [1 + c (pref − p)] (6-18)

where qref is the flow rate at some reference pressure pref. Substituting the
above relationship in Darcy’s equation gives:

Separating the variables and arranging:

Integrating gives:

where qref = flow rate at a reference pressure pref, bbl/day
p1 = upstream pressure, psi
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p2 = downstream pressure, psi
k = permeability, md
μ = viscosity, cp
c = average liquid compressibility, psi−1

Selecting the upstream pressure p1 as the reference pressure pref and
substituting in Equation 6-19 gives the flow rate at Point 1 as:

Choosing the downstream pressure p2 as the reference pressure and
substituting in Equation 6-19 gives:

where q1 and q2 are the flow rates at Points 1 and 2, respectively. 

Example 6-3

Consider the linear system given in Example 6-1 and, assuming a
slightly compressible liquid, calculate the flow rate at both ends of the lin-
ear system. The liquid has an average compressibility of 21 × 10−5 psi−1.

Solution

• Choosing the upstream pressure as the reference pressure gives:

• Choosing the downstream pressure, gives:
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The above calculations show that q1 and q2 are not largely different,
which is due to the fact that the liquid is slightly incompressible and its
volume is not a strong function of pressure.

Linear Flow of Compressible Fluids (Gases)

For a viscous (laminar) gas flow in a homogeneous-linear system, the
real-gas equation-of-state can be applied to calculate the number of gas
moles n at pressure p, temperature T, and volume V:

At standard conditions, the volume occupied by the above n moles is
given by:

Combining the above two expressions and assuming zsc = 1 gives:

Equivalently, the above relation can be expressed in terms of the flow
rate as:

Rearranging:

where q = gas flow rate at pressure p in bbl/day
Qsc = gas flow rate at standard conditions, scf/day

z = gas compressibility factor
Tsc, psc = standard temperature and pressure in °R and psia,

respectively
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Replacing the gas flow rate q with that of Darcy’s Law, i.e., Equation
6-12, gives:

The constant 0.001127 is to convert from Darcy’s units to field units.
Separating variables and arranging yields:

Assuming constant z and μg over the specified pressures, i.e., p1 and
p2, and integrating gives:

where Qsc = gas flow rate at standard conditions, scf/day
k = permeability, md
T = temperature, °R 

μg = gas viscosity, cp 
A = cross-sectional area, ft2

L = total length of the linear system, ft

Setting psc =14.7 psi and Tsc = 520°R in the above expression gives:

It is essential to notice that those gas properties z and μg are a very
strong function of pressure, but they have been removed from the inte-
gral to simplify the final form of the gas flow equation. The above equa-
tion is valid for applications when the pressure < 2,000 psi. The gas prop-
erties must be evaluated at the average pressure p– as defined below.
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Example 6-4

A linear porous media is flowing a 0.72 specific gravity gas at 120°F.
The upstream and downstream pressures are 2,100 psi and 1,894.73 psi,
respectively. The cross-sectional area is constant at 4,500 ft2. The total
length is 2,500 feet with an absolute permeability of 60 md. Calculate the
gas flow rate in scf/day (psc = 14.7 psia, Tsc = 520°R).

Solution

Step 1. Calculate average pressure by using Equation 6-24.

Step 2. Using the specific gravity of the gas, calculate its pseudo-critical
properties by applying Equations 2-17 and 2-18.

Tpc = 395.5°R ppc = 668.4 psia

Step 3. Calculate the pseudo-reduced pressure and temperature.

Step 4. Determine the z-factor from the Standing-Katz chart (Figure 2-1)
to give:

z = 0.78

Step 5. Solve for the viscosity of the gas by applying the Lee-Gonzalez-
Eakin method (Equations 2-63 through 2-66) to give:

μg = 0.0173 cp

Tpr = =600
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1 52
.

.

ppr = =2000
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2 99
.

.

p psi=
+
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2100 1894 73

2
2000

2 2.
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Step 6. Calculate the gas flow rate by applying Equation 6-23.

Radial Flow of Incompressible Fluids

In a radial flow system, all fluids move toward the producing well
from all directions. Before flow can take place, however, a pressure dif-
ferential must exist. Thus, if a well is to produce oil, which implies a
flow of fluids through the formation to the wellbore, the pressure in the
formation at the wellbore must be less than the pressure in the formation
at some distance from the well.

The pressure in the formation at the wellbore of a producing well is
known as the bottom-hole flowing pressure (flowing BHP, pwf).

Consider Figure 6-13, which schematically illustrates the radial flow
of an incompressible fluid toward a vertical well. The formation is con-
sidered to a uniform thickness h and a constant permeability k. Because
the fluid is incompressible, the flow rate q must be constant at all radii.
Due to the steady-state flowing condition, the pressure profile around the
wellbore is maintained constant with time.

Let pwf represent the maintained bottom-hole flowing pressure at the
wellbore radius rw and pe denote the external pressure at the external or
drainage radius. Darcy’s equation as described by Equation 6-13 can be
used to determine the flow rate at any radius r:

where v = apparent fluid velocity, bbl/day-ft2

q = flow rate at radius r, bbl/day
k = permeability, md
μ = viscosity, cp

0.001127 = conversion factor to express the equation in field units
Ar = cross-sectional area at radius r

The minus sign is no longer required for the radial system shown in
Figure 6-13 as the radius increases in the same direction as the pressure.
In other words, as the radius increases going away from the wellbore the

v
q

A

k dp

drr
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pressure also increases. At any point in the reservoir the cross-sectional
area across which flow occurs will be the surface area of a cylinder,
which is 2πrh, or:

The flow rate for a crude oil system is customarily expressed in surface
units, i.e., stock-tank barrels (STB), rather than reservoir units. Using the
symbol Qo to represent the oil flow as expressed in STB/day, then:

q = Bo Qo

where Bo is the oil formation volume factor bbl/STB. The flow rate in
Darcy’s equation can be expressed in STB/day to give:

Q B
rh

k dp
dr

o o

o2
0 001127

π μ
= .

v
q

A
q
rh

k dp
drr

= = =
2

0 001127
π μ

.
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Integrating the above equation between two radii, r1 and r2, when the
pressures are p1 and p2 yields:

For an incompressible system in a uniform formation, Equation 6-26
can be simplified to:

Performing the integration gives:

Frequently the two radii of interest are the wellbore radius rw and the
external or drainage radius re. Then:

where Qo = oil, flow rate, STB/day
pe = external pressure, psi

pwf = bottom-hole flowing pressure, psi
k = permeability, md

μo = oil viscosity, cp
Bo = oil formation volume factor, bbl/STB

h = thickness, ft
re = external or drainage radius, ft
rw = wellbore radius, ft

The external (drainage) radius re is usually determined from the well
spacing by equating the area of the well spacing with that of a circle, i.e.,

π r2
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or

where A is the well spacing in acres.

In practice, neither the external radius nor the wellbore radius is gener-
ally known with precision. Fortunately, they enter the equation as a loga-
rithm, so that the error in the equation will be less than the errors in the
radii.

Equation 6-27 can be arranged to solve for the pressure p at any radius
r to give:

Example 6-5

An oil well in the Nameless Field is producing at a stabilized rate of
600 STB/day at a stabilized bottom-hole flowing pressure of 1,800 psi.
Analysis of the pressure buildup test data indicates that the pay zone is
characterized by a permeability of 120 md and a uniform thickness of 25
ft. The well drains an area of approximately 40 acres. The following
additional data are available:

rw = 0.25 ft A = 40 acres
Bo = 1.25 bbl/STB μo = 2.5 cp

Calculate the pressure profile (distribution) and list the pressure drop
across 1 ft intervals from rw to 1.25 ft, 4 to 5 ft, 19 to 20 ft, 99 to 100 ft,
and 744 to 745 ft.

Solution

Step 1. Rearrange Equation 6-27 and solve for the pressure p at radius r.

p p
B Q
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Step 2. Calculate the pressure at the designated radii.

r, ft p, psi Radius Interval Pressure drop

0.25 1800
1.25 1942 0.25–1.25 1942 − 1800 = 142 psi

4 2045
5 2064 4–5 2064 − 2045 = 19 psi

19 2182
20 2186 19–20 2186 − 2182 = 4 psi

99 2328
100 2329 99–100 2329 − 2328 = 1 psi

744 2506.1
745 2506.2 744–745 2506.2 − 2506.1 = 0.1 psi

Figure 6-14 shows the pressure profile on a function of radius for the
calculated data.

Results of the above example reveal that the pressure drop just around
the wellbore (i.e., 142 psi) is 7.5 times greater than at the 4–5 ft interval,
36 times greater than at 19–20 ft, and 142 times than that at the 99–100 ft
interval. The reason for this large pressure drop around the wellbore is
that the fluid is flowing in from a large drainage of 40 acres.

The external pressure pe used in Equation 6-27 cannot be measured
readily, but Pe does not deviate substantially from initial reservoir pres-
sure if a strong and active aquifer is present. 

Several authors have suggested that the average reservoir pressure pr,
which often is reported in well test results, should be used in performing
material balance calculations and flow rate prediction. Craft and
Hawkins (1959) showed that the average pressure is located at about
61% of the drainage radius re for a steady-state flow condition. Substitute
0.61 re in Equation 6-29 to give:
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or in terms of flow rate:

Golan and Whitson (1986) suggest a method for approximating
drainage area of wells producing from a common reservoir. The authors
assume that the volume drained by a single well is proportional to its rate
of flow. Assuming constant reservoir properties and a uniform thickness,
the approximate drainage area of a single well, Aw, is:
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where Aw = drainage area
AT = total area of the field
qT = total flow rate of the field
qw = well flow rate

Radial Flow of Slightly Compressible Fluids

Craft et al. (1990) used Equation 6-18 to express the dependency of
the flow rate on pressure for slightly compressible fluids. If this equation
is substituted into the radial form of Darcy’s Law, the following is
obtained:

where qref is the flow rate at some reference pressure pref.

Separating the variables in the above equation and integrating over the
length of the porous medium gives:

or:

where qref is oil flow rate at a reference pressure pref. Choosing the bot-
tom-hole flow pressure pwf as the reference pressure and expressing the
flow rate in STB/day gives:
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where co = isothermal compressibility coefficient, psi−1

Qo = oil flow rate, STB/day
k = permeability, md

Example 6-6

The following data are available on a well in the Red River Field:

pe = 2506 psi pwf = 1800
re = 745′ rw = 0.25

Bo = 1.25 μo = 2.5 co = 25 × 10−6 psi−1

k = 0.12 Darcy h = 25 ft.

Assuming a slightly compressible fluid, calculate the oil flow rate.
Compare the result with that of incompressible fluid.

Solution

For a slightly compressible fluid, the oil flow rate can be calculated by
applying Equation 6-33:

Assuming an incompressible fluid, the flow rate can be estimated by
applying Darcy’s equation, i.e., Equation 6-27:
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Radial Flow of Compressible Gases

The basic differential form of Darcy’s Law for a horizontal laminar
flow is valid for describing the flow of both gas and liquid systems. For a
radial gas flow, the Darcy’s equation takes the form:

where qgr = gas flow rate at radius r, bbl/day
r = radial distance, ft
h = zone thickness, ft

μg = gas viscosity, cp
p = pressure, psi

0.001127 = conversion constant from Darcy units to field units

The gas flow rate is usually expressed in scf/day. Referring to the gas
flow rate at standard condition as Qg, the gas flow rate qgr under pressure
and temperature can be converted to that of standard condition by apply-
ing the real gas equation-of-state to both conditions, or

or

where psc = standard pressure, psia
Tsc = standard temperature, °R
Qg = gas flow rate, scf/day
qgr = gas flow rate at radius r, bbl/day

p = pressure at radius r, psia
T = reservoir temperature, °R
z = gas compressibility factor at p and T

zsc = gas compressibility factor at standard condition ≅ 1.0
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Combining Equations 6-34 and 6-35 yields:

Assuming that Tsc = 520°R and psc = 14.7 psia:

Integrating Equation 6-36 from the wellbore conditions (rw and pwf) to
any point in the reservoir (r and p) gives:

Imposing Darcy’s Law conditions on Equation 6-37, i.e.:

• Steady-state flow, which requires that Qg is constant at all radii
• Homogeneous formation, which implies that k and h are constant

gives:
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Combining the above relationships yields:

The integral is called the real gas potential or real gas

pseudopressure, and it is usually represented by m(p) or ψ. Thus 

Equation 6-38 can be written in terms of the real gas potential to give:

or

Equation 6-40 indicates that a graph of ψ vs. ln r/rw yields a straight
line of slope (QgT/0.703kh) and intercepts ψw (Figure 6-15). 

The flow rate is given exactly by

In the particular case when r = re, then:
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where ψe = real gas potential as evaluated from 0 to pe, psi2/cp
ψw = real gas potential as evaluated from 0 to Pwf, psi2/cp

k = permeability, md
h = thickness, ft
re = drainage radius, ft
rw = wellbore radius, ft
Qg = gas flow rate, scf/day

The gas flow rate is commonly expressed in Mscf/day, or

where Qg = gas flow rate, Mscf/day.

Equation 6-43 can be expressed in terms of the average reservoir pres-
sure pr instead of the initial reservoir pressure pe as:
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To calculate the integral in Equation 6-43, the values of 2p/μgz are cal-
culated for several values of pressure p. Then (2p/μgz) versus p is plotted
on a Cartesian scale and the area under the curve is calculated either
numerically or graphically, where the area under the curve from p = 0 to
any pressure p represents the value of ψ corresponding to p. The follow-
ing example will illustrate the procedure.

Example 6-7

The following PVT data from a gas well in the Anaconda Gas Field is
given below1:

p (psi) μg(cp) z

0 0.0127 1.000
400 0.01286 0.937
800 0.01390 0.882

1200 0.01530 0.832
1600 0.01680 0.794
2000 0.01840 0.770
2400 0.02010 0.763
2800 0.02170 0.775
3200 0.02340 0.797
3600 0.02500 0.827
4000 0.02660 0.860
4400 0.02831 0.896

The well is producing at a stabilized bottom-hole flowing pressure of
3,600 psi. The wellbore radius is 0.3 ft. The following additional data are
available:

k = 65 md h = 15 ft T = 600°R
pe = 4400 psi re = 1000 ft

Calculate the gas flow rate in Mscf/day.

Solution

Step 1. Calculate the term for each pressure as shown below:2p
zgμ
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p (psi) μg (cp) z

0 0.0127 1.000 0
400 0.01286 0.937 66,391
800 0.01390 0.882 130,508

1200 0.01530 0.832 188,537
1600 0.01680 0.794 239,894
2000 0.01840 0.770 282,326
2400 0.02010 0.763 312,983
2800 0.02170 0.775 332,986
3200 0.02340 0.797 343,167
3600 0.02500 0.827 348,247
4000 0.02660 0.860 349,711
4400 0.02831 0.896 346,924

Step 2. Plot the term versus pressure as shown in Figure 6-16.

Step 3. Calculate numerically the area under the curve for each value of
p. These areas correspond to the real gas potential ψ at each pres-
sure. These ψ values are tabulated below (ψ versus p is also plot-
ted in the figure).

p (psi)

400 13.2 × 106

800 52.0 × 106

1200 113.1 × 106

1600 198.0 × 106

2000 304.0 × 106

2400 422.0 × 106

2800 542.4 × 106

3200 678.0 × 106

3600 816.0 × 106

4000 950.0 × 106

4400 1089.0 × 106

Step 4. Calculate the flow rate by applying Equation 6-41.

pw = 816.0 × 106 pe = 1089 × 106
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Approximation of the Gas Flow Rate

The exact gas flow rate as expressed by the different forms of Darcy’s
Law, i.e., Equations 6-37 through 6-44, can be approximated by removing

the term outside the integral as a constant. It should be pointed out

that the z�g is considered constant only under a pressure range of < 2,000
psi. Equation 6-43 can be rewritten as:
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Figure 6-16. Real gas pseudopressure data for Example 6-7 (After Donohue and
Erekin, 1982).



Removing the term and integrating gives:

where Qg = gas flow rate, Mscf/day
k = permeability, md

The term (μg z)avg is evaluated at an average pressure p– that is defined
by the following expression: 

The above approximation method is called the pressure-squared
method and is limited to flow calculations when the reservoir pressure
is less that 2,000 psi. Other approximation methods are discussed in
Chapter 7.

Example 6-8

Using the data given in Example 6-7, re-solve for the gas flow rate by
using the pressure-squared method. Compare with the exact method (i.e.,
real gas potential solution).

Solution

Step 1. Calculate the arithmetic average pressure.

Step 2. Determine gas viscosity and gas compressibility factor at 4,020 psi.

μg = 0.0267
z = 0.862
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Step 3. Apply Equation 6-45:

Step 4. Results show that the pressure-squared method approximates the
exact solution of 37,614 with an absolute error of 1.86%. This
error is due to the limited applicability of the pressure-squared
method to a pressure range of < 2,000 psi.

Horizontal Multiple-Phase Flow

When several fluid phases are flowing simultaneously in a horizontal
porous system, the concept of the effective permeability to each phase
and the associated physical properties must be used in Darcy’s equation.
For a radial system, the generalized form of Darcy’s equation can be
applied to each reservoir as follows:

where ko, kw, kg = effective permeability to oil, water, and gas, md
μo, μw, μg = viscosity to oil, water, and gas, cp
qo, qw, qg = flow rates for oil, water, and gas, bbl/day

k = absolute permeability, md

The effective permeability can be expressed in terms of the relative and
absolute permeability, as presented by Equations 5-1 through 5-2, to give:
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Using the above concept in Darcy’s equation and expressing the flow
rate in standard conditions yield:

where Qo, Qw = oil and water flow rates, STB/day
Bo, Bw = oil and water formation volume factor, bbl/STB

Qg = gas flow rate, scf/day
Bg = gas formation volume factor, bbl/scf

k = absolute permeability, md

The gas formation volume factor Bg is previously expressed by Equa-
tion 2-54 as:

Performing the regular integration approach on Equations 6-46
through 6-48 yields:

• Oil Phase

• Water Phase
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• Gas Phase
In terms of the real gas potential:

In terms of the pressure-squared:

where Qg = gas flow rate, Mscf/day
k = absolute permeability, md
T = temperature, °R

In numerous petroleum engineering calculations, it is convenient to
express the flow rate of any phase as a ratio of other flowing phase. Two
important flow ratios are the “instantaneous” water-oil ratio (WOR) and
“instantaneous” gas-oil ratio (GOR). The generalized form of Darcy’s
equation can be used to determine both flow ratios.

The water-oil ratio is defined as the ratio of the water flow rate to that
of the oil. Both rates are expressed in stock-tank barrels per day, or:

Dividing Equation 6-46 by Equation 6-48 gives:

where WOR = water-oil ratio, STB/STB.

The instantaneous GOR, as expressed in scf/STB, is defined as the
total gas flow rate, i.e., free gas and solution gas, divided by the oil flow
rate, or

GOR
Q R Q

Q
o s g

o
=

+

WOR
k

k

B

B
rw

ro

o o

w w

= ⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

μ
μ

(6-53)

WOR
Q
Q

w

o
=

Q
kh k p p

z T r r
g

rg e wf

g avg e w

=
−( ) ( )

( ) ln ( / )

2 2

1422 μ
(6-52)

Q
kh k

T r r
g

rg e w

e w

=
−( ) ( )

ln ( / )

ψ ψ
1422

(6-51)

372 Reservoir Engineering Handbook



or

(6-54)

where GOR = “instantaneous” gas-oil ratio, scf/STB
Rs = gas solubility, scf/STB
Qg = free gas flow rate, scf/day
Qo = oil flow rate, STB/day

Substituting Equations 6-46 and 6-48 into Equation 6-54 yields:

where Bg is the gas formation volume factor as expressed in bbl/scf.

A complete discussion of the practical applications of the water-oil and
gas-oil ratios is given in the subsequent chapters.

UNSTEADY-STATE FLOW

Consider Figure 6-17A, which shows a shut-in well that is centered in
a homogeneous circular reservoir of radius re with a uniform pressure pi

throughout the reservoir. This initial reservoir condition represents the
zero producing time. If the well is allowed to flow at a constant flow rate
of q, a pressure disturbance will be created at the sand face. The pressure
at the wellbore, i.e., pwf, will drop instantaneously as the well is opened.
The pressure disturbance will move away from the wellbore at a rate that
is determined by:

• Permeability
• Porosity
• Fluid viscosity
• Rock and fluid compressibilities

Section B in Figure 6-17 shows that at time t1, the pressure disturbance
has moved a distance r1 into the reservoir. Notice that the pressure distur-
bance radius is continuously increasing with time. This radius is com-
monly called radius of investigation and referred to as rinv. It is also
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important to point out that as long as the radius of investigation has not
reached the reservoir boundary, i.e., re, the reservoir will be acting as if it
is infinite in size. During this time we say that the reservoir is infinite act-
ing because the outer drainage radius re can be mathematically infinite.

A similar discussion to the above can be used to describe a well that is
producing at a constant bottom-hole flowing pressure. Section C in Fig-
ure 6-17 schematically illustrates the propagation of the radius of investi-
gation with respect to time. At time t4, the pressure disturbance reaches
the boundary, i.e., rinv = re. This causes the pressure behavior to change.

Based on the above discussion, the transient (unsteady-state) flow is
defined as that time period during which the boundary has no effect
on the pressure behavior in the reservoir and the reservoir will
behave as its infinite in size. Section B in Figure 6-17 shows that the
transient flow period occurs during the time interval 0 < t < tt for the con-
stant flow rate scenario and during the time period 0 < t < t4 during the
constant pwf scenario as depicted by Section C in Figure 6-17.

374 Reservoir Engineering Handbook

Figure 6-17. Pressure disturbance as a function of time.



Basic Transient Flow Equation

Under the steady-state flowing condition, the same quantity of fluid
enters the flow system as leaves it. In the unsteady-state flow condition,
the flow rate into an element of volume of a porous media may not be
the same as the flow rate out of that element. Accordingly, the fluid con-
tent of the porous medium changes with time. The variables in
unsteady-state flow additional to those already used for steady-state
flow, therefore, become:

• Time, t
• Porosity, φ
• Total compressibility, ct

The mathematical formulation of the transient flow equation is based
on combining three independent equations and a specifying set of bound-
ary and initial conditions that constitute the unsteady-state equation.
These equations and boundary conditions are briefly described below:

a. Continuity Equation
The continuity equation is essentially a material balance equation that
accounts for every pound mass of fluid produced, injected, or remain-
ing in the reservoir.

b. Transport Equation
The continuity equation is combined with the equation for fluid
motion (transport equation) to describe the fluid flow rate “in” and
“out” of the reservoir. Basically, the transport equation is Darcy’s
equation in its generalized differential form.

c. Compressibility Equation
The fluid compressibility equation (expressed in terms of density or
volume) is used in formulating the unsteady-state equation with the
objective of describing the changes in the fluid volume as a function
of pressure.

d. Initial and Boundary Conditions
There are two boundary conditions and one initial condition required
to complete the formulation and the solution of the transient flow
equation. The two boundary conditions are:

• The formation produces at a constant rate into the wellbore.
• There is no flow across the outer boundary and the reservoir behaves

as if it were infinite in size, i.e., re = ∞.
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The initial condition simply states the reservoir is at a uniform pressure
when production begins, i.e., time = 0.

Consider the flow element shown in Figure 6-18. The element has a
width of dr and is located at a distance of r from the center of the well.
The porous element has a differential volume of dV. According to the
concept of the material-balance equation, the rate of mass flow into an
element minus the rate of mass flow out of the element during a differen-
tial time Δt must be equal to the mass rate of accumulation during that
time interval, or:
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The individual terms of Equation 6-56 are described below:

Mass Entering the Volume Element During Time Interval Δt

(Mass)in = Δt [Aνρ]r+dr (6-57)

where ν = velocity of flowing fluid, ft/day
ρ = fluid density at (r + dr), lb/ft3

A = Area at (r + dr)
Δt = time interval, days

The area of an element at the entering side is:

Ar+dr = 2π(r + dr) h (6-58)

Combining Equation 6-58 with 6-47 gives:

[Mass]in = 2π Δt (r + dr) h (νρ)r+dr (6-59)

Mass Leaving the Volume Element

Adopting the same approach as that of the leaving mass gives:

[Mass]out = 2π Δt rh (νρ)r (6-60)

Total Accumulation of Mass

The volume of some element with a radius of r is given by:

V = π r2 h

Differentiating the above equation with respect to r gives:

or:

dV = (2πrh)dr (6-61)

Total mass accumulation during Δt = dV [(φρ)t + Δt − (φρ)t]

dV
dr

rh= 2π
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Substituting for dV yields:

Total mass accumulation = (2πrh) dr [(φρ)t + Δt − (φρ)t] (6-62)

Replacing terms of Equation 6-56 with those of the calculated relation-
ships gives:

2πh (r + dr) Δt (φρ)r + dr − 2πhr Δt (φρ)r = (2πrh) dr [(φρ)t + Δt − (φρ)t]

Dividing the above equation by (2πrh) dr and simplifying gives:

or

where φ = porosity
ρ = density, lb/ft3

ν = fluid velocity, ft/day

Equation 6-63 is called the continuity equation, and it provides the
principle of conservation of mass in radial coordinates.

The transport equation must be introduced into the continuity equation
to relate the fluid velocity to the pressure gradient within the control vol-
ume dV. Darcy’s Law is essentially the basic motion equation, which
states that the velocity is proportional to the pressure gradient (∂p/∂r).
From Equation 6-25:

where k = permeability, md
ν = velocity, ft/day
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Combining Equation 6-64 with Equation 6-63 results in:

Expanding the right-hand side by taking the indicated derivatives elimi-
nates the porosity from the partial derivative term on the right-hand side:

As shown in Chapter 4, porosity is related to the formation compress-
ibility by the following: 

Applying the chain rule of differentiation to ∂φ/∂ t,

Substituting Equation 6-67 into this equation,

Finally, substituting the above relation into Equation 6-66 and the
result into Equation 6-65 gives:

Equation 6-68 is the general partial differential equation used to
describe the flow of any fluid flowing in a radial direction in porous
media. In addition to the initial assumptions, Darcy’s equation has been
added, which implies that the flow is laminar. Otherwise, the equation is
not restricted to any type of fluid and is equally valid for gases or liquids.
Compressible and slightly compressible fluids, however, must be treated
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separately in order to develop practical equations that can be used to
describe the flow behavior of these two fluids. The treatments of the fol-
lowing systems are discussed below:

• Radial flow of slightly compressible fluids
• Radial flow of compressible fluids

Radial Flow of Slightly Compressible Fluids

To simplify Equation 6-68, assume that the permeability and viscosity
are constant over pressure, time, and distance ranges. This leads to:

Expanding the above equation gives:

Using the chain rule in the above relationship yields:

Dividing the above expression by the fluid density ρ gives

Recall that the compressibility of any fluid is related to its density by:
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Combining the above two equations gives:

The term is considered very small and may be ignored:

Define total compressibility, ct, as:

ct = c + cf (6-71)

Combining Equations 6-69 with 6-70 and rearranging gives:

where the time t is expressed in days.

Equation 6-72 is called the diffusivity equation. It is one of the most
important equations in petroleum engineering. The equation is particu-
larly used in analysis well testing data where the time t is commonly
recorded in hours. The equation can be rewritten as:

where k = permeability, md
r = radial position, ft
p = pressure, psia
ct = total compressibility, psi−1

t = time, hrs
φ = porosity, fraction
μ = viscosity, cp

When the reservoir contains more than one fluid, total compressibility
should be computed as
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ct = coSo + cwSw + cgSg + cf (6-74)

where co, cw, and cg refer to the compressibility of oil, water, and gas,
respectively, while So, Sw, and Sg refer to the fractional saturation of
these fluids. Note that the introduction of ct into Equation 6-72 does not
make Equation 6-72 applicable to multiphase flow; the use of ct, as
defined by Equation 6-73, simply accounts for the compressibility of
any immobile fluids that may be in the reservoir with the fluid that is
flowing.

The term [0.000264 k/φμct] (Equation 6-73) is called the diffusivity
constant and is denoted by the symbol η, or:

(6-75)

The diffusivity equation can then be written in a more convenient
form as:

The diffusivity equation as represented by Equation 6-76 is essentially
designed to determine the pressure as a function of time t and position r.

Before discussing and presenting the different solutions to the diffusiv-
ity equation, it is necessary to summarize the assumptions and limitations
used in developing Equation 6-76:

1. Homogeneous and isotropic porous medium
2. Uniform thickness
3. Single phase flow
4. Laminar flow
5. Rock and fluid properties independent of pressure

Notice that for a steady-state flow condition, the pressure at any point
in the reservoir is constant and does not change with time, i.e., ∂p/∂t = 0,
and therefore Equation 6-76 reduces to:

Equation 6-77 is called Laplace’s equation for steady-state flow.
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Example 6-9

Show that the radial form of Darcy’s equation is the solution to Equa-
tion 6-77.

Solution

Step 1. Start with Darcy’s Law as expressed by Equation 6-29

Step 2. For a steady-state incompressible flow, the term between the two
brackets is constant and labeled as C, or:

Step 3. Evaluate the above expression for the first and second derivative
to give:

Step 4. Substitute the above two derivatives in Equation 6-77

Step 5. Results of Step 4 indicate that Darcy’s equation satisfies Equation
6-77 and is indeed the solution to Laplace’s equation.

To obtain a solution to the diffusivity equation (Equation 6-76), it is
necessary to specify an initial condition and impose two boundary condi-
tions. The initial condition simply states that the reservoir is at a uniform
pressure pi when production begins. The two boundary conditions require
that the well is producing at a constant production rate and that the reser-
voir behaves as if it were infinite in size, i.e., re = ∞.
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Based on the boundary conditions imposed on Equation 6-76, there are
two generalized solutions to the diffusivity equation:

• Constant-terminal-pressure solution
• Constant-terminal-rate solution

The constant-terminal-pressure solution is designed to provide the
cumulative flow at any particular time for a reservoir in which the pres-
sure at one boundary of the reservoir is held constant. This technique is
frequently used in water influx calculations in gas and oil reservoirs.

The constant-terminal-rate solution of the radial diffusivity equation
solves for the pressure change throughout the radial system providing
that the flow rate is held constant at one terminal end of the radial sys-
tem, i.e., at the producing well. These are two commonly used forms of
the constant-terminal-rate solution:

• The Ei-function solution
• The dimensionless pressure pD solution

CONSTANT-TERMINAL-PRESSURE SOLUTION

In the constant-rate solution to the radial diffusivity equation, the flow
rate is considered to be constant at a certain radius (usually wellbore
radius) and the pressure profile around that radius is determined as a
function of time and position. In the constant-terminal-pressure solution,
the pressure is known to be constant at some particular radius and the
solution is designed to provide the cumulative fluid movement across the
specified radius (boundary). 

The constant-pressure solution is widely used in water influx calcula-
tions. A detailed description of the solution and its practical reservoir
engineering applications is appropriately discussed in the water influx
chapter of the book (Chapter 10).

CONSTANT-TERMINAL-RATE SOLUTION

The constant-terminal-rate solution is an integral part of most transient
test analysis techniques, such as with drawdown and pressure buildup
analyses. Most of these tests involve producing the well at a constant
flow rate and recording the flowing pressure as a function of time, i.e.,
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p(rw,t). There are two commonly used forms of the constant-terminal-rate
solution:

• The Ei-function solution
• The dimensionless pressure pD solution

These two popular forms of solution are discussed below.

The Ei-Function Solution

Matthews and Russell (1967) proposed a solution to the diffusivity
equation that is based on the following assumptions:

• Infinite acting reservoir, i.e., the reservoir is infinite in size
• The well is producing at a constant flow rate
• The reservoir is at a uniform pressure, pi, when production begins
• The well, with a wellbore radius of rw, is centered in a cylindrical reser-

voir of radius re

• No flow across the outer boundary, i.e., at re

Employing the above conditions, the authors presented their solution
in the following form:

where p (r,t) = pressure at radius r from the well after t hours
t = time, hrs
k = permeability, md

Qo = flow rate, STB/day

The mathematical function, Ei, is called the exponential integral and
is defined by:
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Craft, Hawkins, and Terry (1991) presented the values of the Ei-function
in tabulated and graphical forms as shown in Table 6-1 and Figure 6-19,
respectively.

The Ei solution, as expressed by Equation 6-78, is commonly referred
to as the line-source solution. The exponential integral Ei can be approx-
imated by the following equation when its argument x is less than 0.01:

Ei (−x) = ln(1.781x) (6-80)

where the argument x in this case is given by:

Equation 6-80 approximates the Ei-function with less than 0.25%
error. Another expression that can be used to approximate the Ei-function
for the range 0.01 < x < 3.0 is given by:

Ei (−x) = a1 + a2 ln(x) + a3 [ln(x)]2 + a4 [ln(x)]3 + a5 x
+ a6 x2 + a7 x3 + a8 / x (6-81)

With the coefficients a1 through a8 having the following values:

a1 = −0.33153973 a2 = −0.81512322 a3 = 5.22123384(10−2)
a4 = 5.9849819(10−3) a5 = 0.662318450 a6 = −0.12333524
a7 = 1.0832566(10−2) a8 = 8.6709776(10−4)

The above relationship approximated the Ei-values with an average
error of 0.5%.

It should be pointed out that for x > 10.9, the Ei (−x) can be considered
zero for all practical reservoir engineering calculations.

Example 6-10

An oil well is producing at a constant flow rate of 300 STB/day under
unsteady-state flow conditions. The reservoir has the following rock and
fluid properties:

Βo = 1.25 bbl/STB μo = 1.5 cp ct = 12 × 10−6 psi−1

ko = 60 md h = 15 ft pi = 4000 psi
φ = 15% rw = 0.25 ft

x
c r

k t
t= 948 2φμ
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Table 6-1
Values of the −Ei (−x) as a Function of x

(After Craft, Hawkins, and Terry, 1991)

x −Ei(−x) x −Ei(−x) x −Ei(−x)

0.1 1.82292 4.3 0.00263 8.5 0.00002
0.2 1.22265 4.4 0.00234 8.6 0.00002
0.3 0.90568 4.5 0.00207 8.7 0.00002
0.4 0.70238 4.6 0.00184 8.8 0.00002
0.5 0.55977 4.7 0.00164 8.9 0.00001
0.6 0.45438 4.8 0.00145 9.0 0.00001
0.7 0.37377 4.9 0.00129 9.1 0.00001
0.8 0.31060 5.0 0.00115 9.2 0.00001
0.9 0.26018 5.1 0.00102 9.3 0.00001
1.0 0.21938 5.2 0.00091 9.4 0.00001
1.1 0.18599 5.3 0.00081 9.5 0.00001
1.2 0.15841 5.4 0.00072 9.6 0.00001
1.3 0.13545 5.5 0.00064 9.7 0.00001
1.4 0.11622 5.6 0.00057 9.8 0.00001
1.5 0.10002 5.7 0.00051 9.9 0.00000
1.6 0.08631 5.8 0.00045 10.0 0.00000
1.7 0.07465 5.9 0.00040
1.8 0.06471 6.0 0.00036
1.9 0.05620 6.1 0.00032
2.0 0.04890 6.2 0.00029
2.1 0.04261 6.3 0.00026
2.2 0.03719 6.4 0.00023
2.3 0.03250 6.5 0.00020
2.4 0.02844 6.6 0.00018
2.5 0.02491 6.7 0.00016
2.6 0.02185 6.8 0.00014
2.7 0.01918 6.9 0.00013
2.8 0.01686 7.0 0.00012
2.9 0.01482 7.1 0.00010
3.0 0.01305 7.2 0.00009
3.1 0.01149 7.3 0.00008
3.2 0.01013 7.4 0.00007
3.3 0.00894 7.5 0.00007
3.4 0.00789 7.6 0.00006
3.5 0.00697 7.7 0.00005
3.6 0.00616 7.8 0.00005
3.7 0.00545 7.9 0.00004
3.8 0.00482 8.0 0.00004
3.9 0.00427 8.1 0.00003
4.0 0.00378 8.2 0.00003
4.1 0.00335 8.3 0.00003
4.2 0.00297 8.4 0.00002
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1. Calculate pressure at radii of 0.25, 5, 10, 50, 100, 500, 1,000, 1,500,
2,000, and 2,500 feet, for 1 hour. 
Plot the results as:

a. Pressure versus logarithm of radius
b. Pressure versus radius

2. Repeat part 1 for t = 12 hours and 24 hours. Plot the results as pressure
versus logarithm of radius.

Solution

Step 1. From Equation 6-78:

Step 2. Perform the required calculations after one hour in the following
tabulated form:

Elapsed Time t = 1 hr

r, ft x = −42.6(10−6) Ei (−x) p(r,1) = 4000 + 44.125 Ei (−x)

0.25 −2.6625(10−6) −12.26* 3459
5 −0.001065 −6.27* 3723

10 −0.00426 −4.88* 3785
50 −0.1065 −1.76† 3922

100 −0.4260 −0.75† 3967
500 −10.65 0 4000

1000 −42.60 0 4000
1500 −95.85 0 4000
2000 −175.40 0 4000
2500 −266.25 0 4000

*As calculated from Equation 6-29
†From Figure 6-19

r2

1

p(r,t) 4000
70.6(300) (1.5) (1.25)
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⎤
⎦⎥

((1.5)(12 10 6) r2

(60) (t)

p(r,t) 4000 44.125E 42.6(10i

× −

= + −

⎡

⎣
⎢

⎤

⎦
⎥

−−⎡

⎣
⎢

⎤

⎦
⎥6)

r2

t
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Step 3. Show results of the calculation graphically as illustrated in Fig-
ures 6-20 and 6-21.

Step 4. Repeat the calculation for t = 12 and 24 hrs.

Elapsed Time t = 12 hrs

r, ft x = 42.6(10−6) Ei (−x) p(r,12) = 4000 + 44.125 Ei (−x)

0.25 0.222 (10−6) −14.74* 3350
5 88.75 (10−6) −8.75* 3614

10 355.0 (10−6) −7.37* 3675
50 0.0089 −4.14* 3817

100 0.0355 −2.81† 3876
500 0.888 −0.269 3988

1000 3.55 −0.0069 4000
1500 7.99 −3.77(10−5) 4000
2000 14.62 0 4000
2500 208.3 0 4000

*As calculated from Equation 6-29
†From Figure 6-19

r2

12
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Elapsed Time t = 24 hrs

r, ft x = 42.6(10−6) Ei (−x) p(r,24) = 4000 + 44.125 Ei (−x)

0.25 −0.111 (10−6) −15.44* 3319
5 −44.38 (10−6) −9.45* 3583

10 −177.5 (10−6) −8.06* 3644
50 −0.0045 −4.83* 3787

100 −0.0178 −3.458† 3847
500 −0.444 −0.640 3972

1000 −1.775 −0.067 3997
1500 −3.995 −0.0427 3998
2000 −7.310 8.24 (10−6) 4000
2500 −104.15 0 4000

*As calculated from Equation 6-29
†From Figure 6-19

Step 5. Results of Step 4 are shown graphically in Figure 6-21.

The above example shows that most of the pressure loss occurs close
to the wellbore; accordingly, near-wellbore conditions will exert the

r 2

24
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Figure 6-21. Pressure profiles as a function of time on a semi log scale.



greatest influence on flow behavior. Figure 6-21 shows that the pressure
profile and the drainage radius are continuously changing with time.

When the parameter x in the Ei-function is less than 0.01, the log
approximation as expressed by Equation 6-80 can be used in Equation
6-78 to give:

For most of the transient flow calculations, engineers are primarily
concerned with the behavior of the bottom-hole flowing pressure at the
wellbore, i.e., r = rw. Equation 6-82 can be applied at r = rw to yield:

where k = permeability, md
t = time, hr

ct = total compressibility, psi−1

It should be noted that Equations 6-82 and 6-83 cannot be used until
the flow time t exceeds the limit imposed by the following constraint:

where t = time, hr
k = permeability, md

Example 6-11

Using the data in Example 6-10, estimate the bottom-hole flowing
pressure after 10 hours of production.

Solution

Step 1. Equation 6-83 can be used to calculate pwf only if the time
exceeds the time limit imposed by Equation 6-84, or:

t
c r

k
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For all practical purposes, Equation 6-83 can be used anytime
during the transient flow period to estimate the bottom-hole
pressure.

Step 2. Since the specified time of 10 hr is greater than 0.000267 hr, the
pwf can be estimated by applying Equation 6-83.

The second form of solution to the diffusivity equation is called the
dimensionless pressure drop and is discussed below.

The Dimensionless Pressure Drop (pD) Solution

Well test analysis often makes use of the concept of the dimensionless
variables in solving the unsteady-state flow equation. The importance of
dimensionless variables is that they simplify the diffusivity equation and
its solution by combining the reservoir parameters (such as permeability,
porosity, etc.) and thereby reduce the total number of unknowns.

To introduce the concept of the dimensionless pressure drop solution,
consider for example Darcy’s equation in a radial form as given previously
by Equation 6-27.

Rearrange the above equation to give:
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It is obvious that the right-hand side of the above equation has no units
(i.e., dimensionless) and, accordingly, the left-hand side must be dimen-
sionless. Since the left-hand side is dimensionless, and (pe − pwf) has the
units of psi, it follows that the term [Qo Bo μo/(0.00708kh)] has units of
pressure. In fact, any pressure difference divided by [Qo Bo μo/(0.00708kh)]
is a dimensionless pressure. Therefore, Equation 6-85 can be written in a
dimensionless form as:

pD = ln(reD)

where

This concept can be extended to consider unsteady-state equations
where the time is a variable. Defining:

In transient flow analysis, the dimensionless pressure pD is always a
function of dimensionless time that is defined by the following expression:

In transient flow analysis, the dimensionless pressure pD is always a
function of dimensionless time that is defined by the following expression:

The above expression is only one form of the dimensionless time.
Another definition in common usage is tDA, the dimensionless time based
on total drainage area.
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where A = total drainage area = π re
2

re = drainage radius, ft
rw = wellbore radius, ft

The dimensionless pressure pD also varies with location in the reser-
voir as represented by the dimensionless radial distances rD and reD that
are defined by:

and

where pD = dimensionless pressure drop
reD = dimensionless external radius
tD = dimensionless time
rD = dimensionless radius

t = time, hr
p(r,t) = pressure at radius r and time t

k = permeability, md
μ = viscosity, cp

The above dimensionless groups (i.e., pD, tD, and rD) can be introduced
into the diffusivity equation (Equation 6-76) to transform the equation
into the following dimensionless form:

Van Everdingen and Hurst (1949) proposed an analytical solution to
the above equation by assuming:
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• Perfectly radial reservoir system
• The producing well is in the center and producing at a constant produc-

tion rate of Q
• Uniform pressure pi throughout the reservoir before production
• No flow across the external radius re

Van Everdingen and Hurst presented the solution to Equation 6-89 in a
form of infinite series of exponential terms and Bessel functions. The
authors evaluated this series for several values of reD over a wide range
of values for tD. Chatas (1953) and Lee (1982) conveniently tabulated
these solutions for the following two cases:

• Infinite-acting reservoir
• Finite-radial reservoir

Infinite-Acting Reservoir

When a well is put on production at a constant flow rate after a shut-in
period, the pressure in the wellbore begins to drop and causes a pressure
disturbance to spread in the reservoir. The influence of the reservoir
boundaries or the shape of the drainage area does not affect the rate at
which the pressure disturbance spreads in the formation. That is why the
transient state flow is also called the infinite acting state. During the infi-
nite acting period, the declining rate of wellbore pressure and the manner
by which the pressure disturbance spreads through the reservoir are
determined by reservoir and fluid characteristics such as:

• Porosity, φ
• Permeability, k
• Total compressibility, ct

• Viscosity, μ

For an infinite-acting reservoir, i.e., reD = ∞, the dimensionless pressure
drop function pD is strictly a function of the dimensionless time tD, or:

pD = f(tD)

Chatas and Lee tabulated the pD values for the infinite-acting reservoir
as shown in Table 6-2. The following mathematical expressions can be
used to approximate these tabulated values of pD:
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Table 6-2
pD vs. tD—Infinite-Radial System, Constant-Rate at the Inner
Boundary (After Lee, J., Well Testing, SPE Textbook Series.)

(Permission to publish by the SPE, copyright SPE, 1982)

tD pD tD pD tD pD

0 0 0.15 0.3750 60.0 2.4758
0.0005 0.0250 0.2 0.4241 70.0 2.5501
0.001 0.0352 0.3 0.5024 80.0 2.6147
0.002 0.0495 0.4 0.5645 90.0 2.6718
0.003 0.0603 0.5 0.6167 100.0 2.7233
0.004 0.0694 0.6 0.6622 150.0 2.9212
0.005 0.0774 0.7 0.7024 200.0 3.0636
0.006 0.0845 0.8 0.7387 250.0 3.1726
0.007 0.0911 0.9 0.7716 300.0 3.2630
0.008 0.0971 1.0 0.8019 350.0 3.3394
0.009 0.1028 1.2 0.8672 400.0 3.4057
0.01 0.1081 1.4 0.9160 450.0 3.4641
0.015 0.1312 2.0 1.0195 500.0 3.5164
0.02 0.1503 3.0 1.1665 550.0 3.5643
0.025 0.1669 4.0 1.2750 600.0 3.6076
0.03 0.1818 5.0 1.3625 650.0 3.6476
0.04 0.2077 6.0 1.4362 700.0 3.6842
0.05 0.2301 7.0 1.4997 750.0 3.7184
0.06 0.2500 8.0 1.5557 800.0 3.7505
0.07 0.2680 9.0 1.6057 850.0 3.7805
0.08 0.2845 10.0 1.6509 900.0 3.8088
0.09 0.2999 15.0 1.8294 950.0 3.8355
0.1 0.3144 20.0 1.9601 1,000.0 3.8584

30.0 2.1470
40.0 2.2824
50.0 2.3884

Notes: For tD < 0.01, pD ≅ 2 ZtD/x.

For 100 < tD < 0.25 r2
eD, pD ≅ 0.5 (ln tD + 0.80907).

• For tD < 0.01:

• For tD > 100:

pD = 0.5[ln(tD) + 0.80907] (6-92)

p
t

D
D= 2
π

(6-91)
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• For 0.02 < tD < 1000:

pD = a1 + a2 ln (tD) + a3 [ln (tD)]2 + a4 [ln (tD)]3 + a5 tD
+ a6 (tD)2 + a7 (tD)3 + a8/tD (6-93)

where
a1 = 0.8085064 a2 = 0.29302022 a3 = 3.5264177(10−2)
a4 = –1.4036304(10−3) a5 = –4.7722225(10−4) a6 = 5.1240532(10−7)
a7 = –2.3033017(10−10) a8 = –2.6723117(10−3)

Finite-Radial Reservoir

The arrival of the pressure disturbance at the well drainage boundary
marks the end of the transient flow period and the beginning of the semi
(pseudo)-steady state. During this flow state, the reservoir boundaries
and the shape of the drainage area influence the wellbore pressure
response as well as the behavior of the pressure distribution throughout
the reservoir. Intuitively, one should not expect the change from the tran-
sient to the semi-steady state in this bounded (finite) system to occur
instantaneously. There is a short period of time that separates the tran-
sient state from the semi-steady state that is called late-transient state.
Due to its complexity and short duration, the late transient flow is not
used in practical well test analysis.

For a finite radial system, the pD-function is a function of both the
dimensionless time and radius, or:

pD = f (tD, reD)

where

Table 6-3 presents pD as a function of tD for 1.5 < reD < 10. It should be
pointed out that Van Everdingen and Hurst principally applied the pD-
function solution to model the performance of water influx into oil reser-
voirs. Thus, the authors’ wellbore radius rw was in this case the external
radius of the reservoir and the re was essentially the external boundary
radius of the aquifer. Therefore, the range of the reD values in Table 6-3 is
practical for this application.

r
external radius

wellbore radius

r

r
eD

e

w

= = (6-94)
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Table 6-3
pD vs. tD—Finite-Radial System, Constant-Rate at the Inner Boundary

(After Lee, J., Well Testing, SPE Textbook Series.)
(Permission to publish by the SPE, copyright SPE, 1982)

reD = 1.5 reD = 2.0 reD = 2.5 reD = 3.0 reD = 3.5 reD = 4.0

tD pD tD pD tD pD tD pD tD pD tD pD

0.06 0.251 0.22 0.443 0.40 0.565 0.52 0.627 1.0 0.802 1.5 0.927
0.08 0.288 0.24 0.459 0.42 0.576 0.54 0.636 1.1 0.830 1.6 0.948
0.10 0.322 0.26 0.476 0.44 0.587 0.56 0.645 1.2 0.857 1.7 0.968
0.12 0.355 0.28 0.492 0.46 0.598 0.60 0.662 1.3 0.882 1.8 0.988
0.14 0.387 0.30 0.507 0.48 0.608 0.65 0.683 1.4 0.906 1.9 1.007
0.16 0.420 0.32 0.522 0.50 0.618 0.70 0.703 1.5 0.929 2.0 1.025
0.18 0.452 0.34 0.536 0.52 0.628 0.75 0.721 1.6 0.951 2.2 1.059
0.20 0.484 0.36 0.551 0.54 0.638 0.80 0.740 1.7 0.973 2.4 1.092
0.22 0.516 0.38 0.565 0.56 0.647 0.85 0.758 1.8 0.994 2.6 1.123
0.24 0.548 0.40 0.579 0.58 0.657 0.90 0.776 1.9 1.014 2.8 1.154
0.26 0.580 0.42 0.593 0.60 0.666 0.95 0.791 2.0 1.034 3.0 1.184
0.28 0.612 0.44 0.607 0.65 0.688 1.0 0.806 2.25 1.083 3.5 1.255
0.30 0.644 0.46 0.621 0.70 0.710 1.2 0.865 2.50 1.130 4.0 1.324
0.35 0.724 0.48 0.634 0.75 0.731 1.4 0.920 2.75 1.176 4.5 1.392
0.40 0.804 0.50 0.648 0.80 0.752 1.6 0.973 3.0 1.221 5.0 1.460
0.45 0.884 0.60 0.715 0.85 0.772 2.0 1.076 4.0 1.401 5.5 1.527
0.50 0.964 0.70 0.782 0.90 0.792 3.0 1.328 5.0 1.579 6.0 1.594
0.55 1.044 0.80 0.849 0.95 0.812 4.0 1.578 6.0 1.757 6.5 1.660
0.60 1.124 0.90 0.915 1.0 0.832 5.0 1.828 7.0 1.727
0.65 1.204 1.0 0.982 2.0 1.215 8.0 1.861
0.70 1.284 2.0 1.649 3.0 1.506 9.0 1.994
0.75 1.364 3.0 2.316 4.0 1.977 10.0 2.127
0.80 1.444 5.0 3.649 5.0 2.398

reD = 4.5 reD = 5.0 reD = 6.0 reD = 7.0 reD = 8.0 reD = 9.0 reD = 10.0

tD pD tD pD tD pD tD pD tD pD tD pD tD pD

2.0 1.023 3.0 1.167 4.0 1.275 6.0 1.436 8.0 1.556 10.0 1.651 12.0 1.732
2.1 1.040 3.1 1.180 4.5 1.322 6.5 1.470 8.5 1.582 10.5 1.673 12.5 1.750
2.2 1.056 3.2 1.192 5.0 1.364 7.0 1.501 9.0 1.607 11.0 1.693 13.0 1.768
2.3 1.702 3.3 1.204 5.5 1.404 7.5 1.531 9.5 1.631 11.5 1.713 13.5 1.784
2.4 1.087 3.4 1.215 6.0 1.441 8.0 1.559 10.0 1.653 12.0 1.732 14.0 1.801
2.5 1.102 3.5 1.227 6.5 1.477 8.5 1.586 10.5 1.675 12.5 1.750 14.5 1.817
2.6 1.116 3.6 1.238 7.0 1.511 9.0 1.613 11.0 1.697 13.0 1.768 15.0 1.832
2.7 1.130 3.7 1.249 7.5 1.544 9.5 1.638 11.5 1.717 13.5 1.786 15.5 1.847
2.8 1.144 3.8 1.259 8.0 1.576 10.0 1.663 12.0 1.737 14.0 1.803 16.0 1.862
2.9 1.158 3.9 1.270 8.5 1.607 11.0 1.711 12.5 1.757 14.5 1.819 17.0 1.890
3.0 1.171 4.0 1.281 9.0 1.638 12.0 1.757 13.0 1.776 15.0 1.835 18.0 1.917
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Table 6-3 (continued)

reD = 4.5 reD = 5.0 reD = 6.0 reD = 7.0 reD = 8.0 reD = 9.0 reD = 10.0

tD pD tD pD tD pD tD pD tD pD tD pD tD pD

3.2 1.197 4.2 1.301 9.5 1.668 13.0 1.810 13.5 1.795 15.5 1.851 19.0 1.943
3.4 1.222 4.4 1.321 10.0 1.698 14.0 1.845 14.0 1.813 16.0 1.867 20.0 1.968
3.6 1.246 4.6 1.340 11.0 1.757 15.0 1.888 14.5 1.831 17.0 1.897 22.0 2.017
3.8 1.269 4.8 1.360 12.0 1.815 16.0 1.931 15.0 1.849 18.0 1.926 24.0 2.063
4.0 1.292 5.0 1.378 13.0 1.873 17.0 1.974 17.0 1.919 19.0 1.955 26.0 2.108
4.5 1.349 5.5 1.424 14.0 1.931 18.0 2.016 19.0 1.986 20.0 1.983 28.0 2.151
5.0 1.403 6.0 1.469 15.0 1.988 19.0 2.058 21.0 2.051 22.0 2.037 30.0 2.194
5.5 1.457 6.5 1.513 16.0 2.045 20.0 2.100 23.0 2.116 24.0 2.906 32.0 2.236
6.0 1.510 7.0 1.556 17.0 2.103 22.0 2.184 25.0 2.180 26.0 2.142 34.0 2.278
7.0 1.615 7.5 1.598 18.0 2.160 24.0 2.267 30.0 2.340 28.0 2.193 36.0 2.319
8.0 1.719 8.0 1.641 19.0 2.217 26.0 2.351 35.0 2.499 30.0 2.244 38.0 2.360
9.0 1.823 9.0 1.725 20.0 2.274 28.0 2.434 40.0 2.658 34.0 2.345 40.0 2.401

10.0 1.927 10.0 1.808 25.0 2.560 30.0 2.517 45.0 2.817 38.0 2.446 50.0 2.604
11.0 2.031 11.0 1.892 30.0 2.846 40.0 2.496 60.0 2.806
12.0 2.135 12.0 1.975 45.0 2.621 70.0 3.008
13.0 2.239 13.0 2.059 50.0 2.746 80.0 3.210
14.0 2.343 14.0 2.142 60.0 2.996 90.0 3.412
15.0 2.447 15.0 2.225 70.0 3.246 100.0 3.614

Notes: For tD smaller than values listed in this table for a given reD, reservoir is infinite acting.
Find pD in Table 6-2.
For 25 < tD and tD larger than values in table.

(1⁄2 + 2tD) 3r4
eD − 4r4

eD ln reD − 2r2
eD − 1

pD ≅ −
(r2

eD − 1) 4(r2
eD − 1)2

For wells in rebounded reservoirs with
r2

eD >> 1

2tDpD ≅ + ln reD − 3⁄4.
r2

eD

Chatas (1953) proposed the following mathematical expression for
calculating pD:

For 25 < tD and 0.25 r2
eD < tD

A special case of Equation 6-95 arises when r2
eD >> 1, then:

p
t

r
rD

D

eD
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The computational procedure of using the pD-function in determining
the bottom-hole flowing pressure changing the transient flow period is
summarized in the following steps:

Step 1. Calculate the dimensionless time tD by applying Equation 6-87.

Step 2. Calculate the dimensionless radius reD from Equation 6-89.

Step 3. Using the calculated values of tD and reD, determine the correspond-
ing pressure function pD from the appropriate table or equation.

Step 4. Solve for the pressure at the desired radius, i.e., rw, by applying
Equation 6-86, or:

Example 6-12

A well is producing at a constant flow rate of 300 STB/day under
unsteady-state flow condition. The reservoir has the following rock and
fluid properties (see Example 6-10):

Bo = 1.25 bbl/STB μo = 1.5 cp ct = 12 × 10−6 psi−1

k = 60 md h = 15 ft pi = 4000 psi
� = 15% rw = 0.25′

Assuming an infinite acting reservoir, i.e., reD = ∞, calculate the bot-
tom-hole flowing pressure after one hour of production by using the
dimensionless pressure approach.

Solution

Step 1. Calculate the dimensionless time tD from Equation 6-87.

t
0.000264 (60) (1)

(0.15)(1.5)(12 10 )(0.25)
93, 866.67D 6 2

=
×

=
−

p r t p
Q B

k h
pw i

o o o
D( , )

.
= − ⎛

⎝⎜
⎞
⎠⎟

μ
0 00708

(6-97)
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Step 2. Since tD > 100, use Equation 6-92 to calculate the dimensionless
pressure drop function:

pD = 0.5 [ln (93,866.67) + 0.80907] = 6.1294

Step 3. Calculate the bottom-hole pressure after 1 hour by applying
Equation 6-97:

The above example shows that the solution as given by the pD-func-
tion technique is identical to that of the Ei-function approach. The main
difference between the two formulations is that the pD-function can be
used only to calculate the pressure at radius r when the flow rate Q is
constant and known. In that case, the pD-function application is essen-
tially restricted to the wellbore radius because the rate is usually known.
On the other hand, the Ei-function approach can be used to calculate the
pressure at any radius in the reservoir by using the well flow rate Q. 

It should be pointed out that, for an infinite-acting reservoir with tD > 100,
the pD-function is related to the Ei-function by the following relation:

The previous example, i.e., Example 6-12, is not a practical problem,
but it is essentially designed to show the physical significance of the pD

solution approach. In transient flow testing, we normally record the bot-
tom-hole flowing pressure as a function of time. Therefore, the dimen-
sionless pressure drop technique can be used to determine one or more of
the reservoir properties, e.g., k or kh, as discussed later in this chapter.

Radial Flow of Compressible Fluids

Gas viscosity and density vary significantly with pressure and there-
fore the assumptions of Equation 6-76 are not satisfied for gas systems,
i.e., compressible fluids. In order to develop the proper mathematical
function for describing the flow of compressible fluids in the reservoir,
the following two additional gas equations must be considered:

p E
t

D i
D

= − −⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
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4
. (6-98)
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• Real density equation

• Gas compressibility equation

Combining the above two basic gas equations with that of Equation
6-68 gives:

where t = time, hr
k = permeability, md
ct = total isothermal compressibility, psi−1

φ = porosity

Al-Hussainy, Ramey, and Crawford (1966) linearize the above basic
flow equation by introducing the real gas potential m(p) to Equation
6-99. Recall the previously defined m(p) equation:

Differentiating the above relation with respect to p gives:

Obtain the following relationships by applying the chair rule:
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Substituting Equation 6-101 into Equations 6-102 and 6-103 gives:

and

Combining Equations 6-104 and 6-105 with 6-99 yields:

Equation 6-106 is the radial diffusivity equation for compressible flu-
ids. This differential equation relates the real gas pseudopressure (real gas
potential) to the time t and the radius r. Al-Hussainy, Ramey, and Craw-
ford (1966) pointed out that in gas well testing analysis, the constant-rate
solution has more practical applications than that provided by the constant-
pressure solution. The authors provided the exact solution to Equation 6-106
that is commonly referred to as the m(p)-solution method. There are
also two other solutions that approximate the exact solution. These
two approximation methods are called the pressure-squared method
and the pressure-approximation method. In general, there are three forms
of the mathematical solution to the diffusivity equation:

• The m(p)-Solution Method (Exact Solution)
• The Pressure-Squared Method (p2-Approximation Method)
• The Pressure Method (p-Approximation Method)

These three methods are presented as follows:

∂
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The m(p)-Solution Method (Exact-Solution)

Imposing the constant-rate condition as one of the boundary condi-
tions required to solve Equation 6-106, Al-Hussainy, et al. (1966) pro-
posed the following exact solution to the diffusivity equation:

where pwf = bottom-hole flowing pressure, psi
pe = initial reservoir pressure

Qg = gas flow rate, Mscf/day
t = time, hr
k = permeability, md

psc = standard pressure, psi
Tsc = standard temperature, °R

T = reservoir temperature
rw = wellbore radius, ft
h = thickness, ft

μi = gas viscosity at the initial pressure, cp
cti = total compressibility coefficient at pi, psi−1

φ = porosity

When psc = 14.7 psia and Tsc = 520°R, Equation 6-107 reduces to:

Equation 6-108 can be written equivalently in terms of the dimension-
less time tD as:
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The dimensionless time is defined previously by Equation 6-86 as:

The parameter γ is called Euler’s constant and given by:

γ = e0.5772 = 1.781 (6-110)

The solution to the diffusivity equation as given by Equations 6-108
and 6-109 expresses the bottom-hole real gas pseudopressure as a func-
tion of the transient flow time t. The solution as expressed in terms of
m(p) is recommended mathematical expression for performing gas-well
pressure analysis due to its applicability in all pressure ranges.

The radial gas diffusivity equation can be expressed in a dimensionless
form in terms of the dimensionless real gas pseudopressure drop ψD. The
solution to the dimensionless equation is given by:

where Qg = gas flow rate, Mscf/day
k = permeability, md

The dimensionless pseudopressure drop ψD can be determined as a
function of tD by using the appropriate expression of Equations 6-91
through 6-96. When tD > 100, the ψD can be calculated by applying
Equation 6-82, or:

ψD = 0.5 [ln (tD) + 0.80907] (6-112)

Example 6-13

A gas well with a wellbore radius of 0.3 ft is producing at a constant
flow rate of 2,000 Mscf/day under transient flow conditions. The initial
reservoir pressure (shut-in pressure) is 4,400 psi at 140°F. The formation
permeability and thickness are 65 md and 15 ft, respectively. The poros-
ity is recorded as 15%. Example 6-7 documents the properties of the gas
as well as values of m(p) as a function of pressures. The table is repro-
duced below for convenience:

m p m p
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wf i

g
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p μg (cp) z m(p), psi2/cp

0 0.01270 1.000 0.000
400 0.01286 0.937 13.2 × 106

800 0.01390 0.882 52.0  × 106

1200 0.01530 0.832 113.1 × 106

1600 0.01680 0.794 198.0 × 106

2000 0.01840 0.770 304.0 × 106

2400 0.02010 0.763 422.0 × 106

2800 0.02170 0.775 542.4 × 106

3200 0.02340 0.797 678.0 × 106

3600 0.02500 0.827 816.0 × 106

4000 0.02660 0.860 950.0 × 106

4400 0.02831 0.896 1089.0 × 106

Assuming that the initial total isothermal compressibility is 3 × 10−4

psi−1, calculate the bottom-hole flowing pressure after 1.5 hours.

Step 1. Calculate the dimensionless time tD

Step 2. Solve for m(pwf) by using Equation 6-109

Step 3. From the given PVT data, interpolate using the value of m(pwf) to
give a corresponding pwf of 4,367 psi.

An identical solution can be obtained by applying the ψD approach as
shown below:

Step 1. Calculate ψD from Equation 6-112

ψD = 0.5 [ln (224,498.6) + 0.8090] = 6.565

m p
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Step 2. Calculate m(pwf) by using Equation 6-111

The Pressure-Squared Approximation Method 
(p2-method)

The first approximation to the exact solution is to remove the pres-
sure-dependent term (μz) outside the integral that defines m(pwf) and
m(pi) to give:

or

The bars over μ and z represent the values of the gas viscosity and
deviation factor as evaluated at the average pressure p–. This average pres-
sure is given by:

Combining Equation 6-114 with Equation 6-108, 6-109, or 6-111 gives:

or
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or, equivalently:

The above approximation solution forms indicate that the product (μz)
is assumed constant at the average pressure p–. This effectively limits the
applicability of the p2-method to reservoir pressures < 2000. It should be
pointed out that when the p2-method is used to determine pwf it is perhaps
sufficient to set μ– z– = μi z.

Example 6-14

A gas well is producing at a constant rate of 7,454.2 Mscf/day under
transient flow conditions. The following data are available:

k = 50 md h = 10 ft φ = 20% pi = 1600 psi
T = 600°R rw = 0.3 ft cti = 6.25 × 10−4 psi−1

The gas properties are tabulated below:

p μg , cp z m(p) , psi2/cp

0 0.01270 1.000 0.000
400 0.01286 0.937 13.2 × 106

800 0.01390 0.882 52.0 × 106

1200 0.01530 0.832 113.1 × 106

1600 0.01680 0.794 198.0 × 106

Calculate the bottom-hole flowing pressure after 4 hours by using:

a. The m(p)-method
b. The p2-method

Solution

a. The m(p)-method

Step 1. Calculate tD

tD =
( )( )

( )( ) ×( )−

0 000264 50 4
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, .
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Step 2. Calculate ψD:

ψD = 0.5 [Ln(279365.1) + 0.80907] = 6.6746

Step 3. Solve for m(pwf) by applying Equation 6-111:

The corresponding value of pwf = 1200 psi.

b. The p2-method

Step 1. Calculate ψD by applying Equation 6-112:

ψD = 0.5[ln(279365.1) + 0.80907] = 6.6477

Step 2. Calculate p2
wf by applying Equation 6-118:

Step 3. The absolute average error is 0.4%

The Pressure-Approximation Method

The second method of approximation to the exact solution of the radial
flow of gases is to treat the gas as a pseudoliquid.

Recalling the gas formation volume factor Bg as expressed in bbl/scf is
given by:

Solving the above expression for p/z gives:

p
z

Tp
T B

sc

sc g
=

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟5 615

1
.

B
p

T
zT
pg

sc

sc
=

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟5 615.

p

p psi

wf

wf

2 21600
1422 7454 2 600 0 0168 0 794

50 10
6 6747 1 427 491

1195

= −
⎡

⎣
⎢

⎤

⎦
⎥

× =

=

( ) ( . ) ( ) ( . ) ( . )
( ) ( )

. , ,

m pwf( ) ( )
( . ) ( )

( ) ( )
.= × − ⎡

⎣⎢
⎤
⎦⎥

=198 10
1422 7454 2 600

50 10
6 6746 1136 ..1 106×

410 Reservoir Engineering Handbook



The difference in the real gas pseudopressure is given by:

Combining the above two expressions gives:

Fetkovich (1973) suggested that at high pressures (p > 3,000), 1/μBg is
nearly constant as shown schematically in Figure 6-22. Imposing
Fetkovich’s condition on Equation 6-119 and integrating gives:
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Combining Equation 6-120 with Equation 6-108, 6-109, or 6-111
gives:

or

or equivalently in terms of dimensionless pressure drop:

where Qg = gas flow rate, Mscf/day
k = permeability, md

B–g = gas formation volume factor, bbl/scf
t = time, hr

pD = dimensionless pressure drop
tD = dimensionless time

It should be noted that the gas properties, i.e., μ, Bg, and ct, are evalu-
ated at pressure p– as defined below:

Again, this method is only limited to applications above 3,000 psi.
When solving for pwf, it might be sufficient to evaluate the gas properties
at pi.

Example 6-15

Resolve Example 6-13 by using the p-approximation method and com-
pare with the exact solution.
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Solution

Step 1. Calculate the dimensionless time tD.

Step 2. Calculate Bg at pi.

Step 3. Calculate the dimensionless pressure pD by applying Equation 6-92.

Step 4. Approximate pwf from Equation 6-123. 

The solution is identical to that of the exact solution.
It should be pointed that Examples 6-10 through 6-15 are designed to

illustrate the use of different solution methods. These examples are not
practical, however, because in transient flow analysis, the bottom-hole
flowing pressure is usually available as a function of time. All the previ-
ous methodologies are essentially used to characterize the reservoir by
determining the permeability k or the permeability-thickness product (kh).

PSEUDOSTEADY-STATE FLOW

In the unsteady-state flow cases discussed previously, it was assumed
that a well is located in a very large reservoir and producing at a constant
flow rate. This rate creates a pressure disturbance in the reservoir that
travels throughout this infinite-size reservoir. During this transient flow
period, reservoir boundaries have no effect on the pressure behavior of the
well. Obviously, the time period where this assumption can be imposed is
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often very short in length. As soon as the pressure disturbance reaches all
drainage boundaries, it ends the transient (unsteady-state) flow regime. A
different flow regime begins that is called pseudosteady (semisteady)-
state flow. It is necessary at this point to impose different boundary condi-
tions on the diffusivity equation and derive an appropriate solution to this
flow regime.

Consider Figure 6-23, which shows a well in radial system that is pro-
ducing at a constant rate for a long enough period that eventually affects
the entire drainage area. During this semisteady-state flow, the change in
pressure with time becomes the same throughout the drainage area. Sec-
tion B in Figure 6-23 shows that the pressure distributions become paral-
leled at successive time periods. Mathematically, this important condition
can be expressed as:
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Figure 6-23. Semisteady-state flow regime.



The constant referred to in the above equation can be obtained from a
simple material balance using the definition of the compressibility, thus:

Arranging:

cVdp = −dV

Differentiating with respect to time t:

or

Expressing the pressure decline rate dp/dt in the above relation in
psi/hr gives:

where q = flow rate, bbl/day
Qo = flow rate, STB/day

dp/dt = pressure decline rate, psi/hr
V = pore volume, bbl

For a radial drainage system, the pore volume is given by:

where A = drainage area, ft2

V
r h Ahe= =π φ φ2

5 615 5 615. .
(6-126)

dp
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Q B
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Combining Equation 6-127 with Equation 6-126 gives:

Examination of the above expression reveals the following important
characteristics of the behavior of the pressure decline rate dp/dt during
the semisteady-state flow:

• The reservoir pressure declines at a higher rate with an increase in the
fluids production rate

• The reservoir pressure declines at a slower rate for reservoirs with 
higher total compressibility coefficients

• The reservoir pressure declines at a lower rate for reservoirs with larger
pore volumes 

Example 6-16

An oil well is producing at a constant oil flow rate of 1,200 STB/day
under a semisteady-state flow regime. Well testing data indicate that the
pressure is declining at a constant rate of 4.655 psi/hr. The following
additional data are available:

h = 25 ft φ = 15% Bo = 1.3 bbl/STB
ct = 12 × 10−6 psi−1

Calculate the well drainage area.

Solution

• q = Qo Bo

• q = (1200) (1.3) = 1560 bb/day
• Apply Equation 6-128 to solve for A.

A = 1,742,400 ft2

− = −
× −4 655
0 23396 1560

12 10 25 0 156.
. ( )

( )( )( )( . )A

dp

dt

q

c r h

q

c Aht e t

= − = −0 23396 0 23396
2

. .

π φ φ
(6-127)
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or

A = 1,742,400 / 43,560 = 40 acres

Matthews, Brons, and Hazebroek (1954) pointed out that once the
reservoir is producing under the semisteady-state condition, each well
will drain from within its own no-flow boundary independently of the
other wells. For this condition to prevail, the pressure decline rate dp/dt
must be approximately constant throughout the entire reservoir, other-
wise flow would occur across the boundaries causing a readjustment in
their positions. Because the pressure at every point in the reservoir is
changing at the same rate, it leads to the conclusion that the average
reservoir pressure is changing at the same rate. This average reservoir
pressure is essentially set equal to the volumetric average reservoir pres-
sure p–r. It is the pressure that is used to perform flow calculations during
the semisteady state flowing condition. In the above discussion, p–r indi-
cates that, in principal, Equation 6-128 can be used to estimate by replac-
ing the pressure decline rate dp/dt with (pi − p–r)/t, or:

or

where t is approximately the elapsed time since the end of the transient
flow regime to the time of interest.

It should be noted that when performing material balance calculations,
the volumetric average pressure of the entire reservoir is used to calcu-
late the fluid properties. This pressure can be determined from the indi-
vidual well drainage properties as follows:

p

p V
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ri i
i

i
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=
∑
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(6-129)

p p
q t
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t
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in which Vi = pore volume of the ith drainage volume
p–ri = volumetric average pressure within the ith drainage

volume.

Figure 6-24 illustrates the concept of the volumetric average pressure.
In practice, the Vi’s are difficult to determine and, therefore, it is com-
mon to use the flow rate qi in Equation 6-129.

The flow rates are measured on a routing basis throughout the lifetime
of the field, thus facilitating the calculation of the volumetric average
reservoir pressure, p–r. Alternatively, the average reservoir pressure can be
expressed in terms of the individual well’s average drainage pressure
decline rates and fluid flow rates by:

p
p q

qr

ri i
i

i
i

=
∑

∑
( )

(6-130)
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Figure 6-24. Volumetric average reservoir pressure.



However, since the material balance equation is usually applied at
regular intervals of 3 to 6 months (i.e., Δt = 3–6 months), throughout the
life of the field, the average field pressure can be expressed in terms of
the incremental net change in underground fluid withdrawal, Δ(F), as:

Where the total underground fluid withdrawals at time t and t + Δt are
given by:

with
Δ(F) = Ft+Δt −Ft

where Rs = gas solubility, scf/STB
Rsw = gas solubility in the water, scf/STB
Bg = gas formation volume factor, bbl/scf
Qo = oil flow rate, STB/day
qo = oil flow rate, bbl/day

Qw = water flow rate, STB/day
qw = water flow rate, bbl/day
Qg = gas flow rate, scf/day

The practical applications of using the pseudosteady-state flow condi-
tion to describe the flow behavior of the following two types of fluids are
presented below: 

F Q B Q B Q Q R Q R B dtt t o

t t

o w w g o s w sw g+

+

= + + − −∫Δ

Δ

[ ( ) ]
0

F Q B Q B Q Q R Q R B dtt o

t

o w w g o s w sw g= + + − −∫ [ ( ) ]
0

p

p F

p

F
p

r

j j

jj

j

jj

=
∑

∑

Δ
Δ

Δ
Δ

( )

( )

p

pq p t

q p t
r

j
j

j

j j
j

=

∂ ∂

∂ ∂

∑

∑

[( ) / ( / ) ]

[ / ( / ) ]

Fundamentals of Reservoir Fluid Flow 419



• Radial flow of slightly compressible fluids
• Radial flow of compressible fluids

Radial Flow of Slightly Compressible Fluids

The diffusivity equation as expressed by Equation 6-73 for the tran-
sient flow regime is:

For the semisteady-state flow, the term (∂p/∂t) is constant and is
expressed by Equation 6-128. Substituting Equation 6-128 into the diffu-
sivity equation gives:

or

Equation 6-132 can be expressed as:

Integrating the above equation gives:

where c1 is the constant of the integration and can be evaluated by
imposing the outer no-flow boundary condition [i.e., (∂p/∂r)re = 0] on the
above relation to give:
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Combining the above two expressions gives:

Integrating again:

Performing the above integration and assuming (rw
2 /re

2) is negligible
gives:

A more appropriate form of the above is to solve for the flow rate, to
give:

where Q = flow rate, STB/day
B = formation volume factor, bbl/STB
k = permeability, md

The volumetric average reservoir pressure p–r is commonly used in cal-
culating the liquid flow rate under the semisteady-state flowing condi-
tion. Introducing the p–r into Equation 6-134 gives:
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Note that:

The above observation suggests that the volumetric average pressure p–r

occurs at about 47% of the drainage radius during the semisteady-state
condition.

It is interesting to notice that the dimensionless pressure pD solution to
the diffusivity equation can be used to derive Equation 6-135. The pD

function for a bounded reservoir was given previously by Equation 6-96
for a bounded system as:

where the above three dimensionless parameters are given by Equations
6-86 through 6-88 as:

Combining the above four relationships gives:
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Solving Equation 6-129 for the time t gives:

Combining the above two equations and solving for the flow rate Q
yields:

It should be pointed out that the pseudosteady-state flow occurs
regardless of the geometry of the reservoir. Irregular geometries also
reach this state when they have been produced long enough for the entire
drainage area to be affected.

Rather than developing a separate equation for each geometry, Ramey
and Cobb (1971) introduced a correction factor that is called the shape
factor, CA, which is designed to account for the deviation of the drainage
area from the ideal circular form. The shape factor, as listed in Table 6-4,
accounts also for the location of the well within the drainage area. Intro-
ducing CA into Equation 6-132 and performing the solution procedure
gives the following two solutions:

• In terms of the volumetric average pressure p–r:

• In terms of the initial reservoir pressure pi:

The changes in the average reservoir pressure as a function of time and
initial reservoir pressure pi is given by Equation 6-129; as:
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Combining the above equation with Equation 6-136 gives:

where k = permeability, md
A = drainage area, ft2

CA = shape factor
Q = flow rate, STB/day
t = time, hr

ct = total compressibility coefficient, psi−1

Equation 6-136 can be arranged to solve for Q to give:

It should be noted that if Equation 6-138 is applied to a circular reser-
voir of a radius re, then:

A = π re
2

and the shape factor for a circular drainage area as given in Table 6-3 is: 

CA = 31.62

Substituting in Equation 6-138, it reduces to:

The above equation is identical to that of Equation 6-135.
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Table 6-4
Shape Factors for Various Single-Well Drainage Areas
(After Earlougher, R., Advances in Well Test Analysis,

permission to publish by the SPE, copyright SPE, 1977)

Use Infinite System
Less Than Solution with Less

In Bounded Exact 1% Error Than 1% Error
Reservoirs CA ln CA for tDA > For tDA > for tDA <

31.62 3.4538 −1.3224 0.1 0.06 0.10

31.6 3.4532 −1.3220 0.1 0.06 0.10

27.6 3.3178 −1.2544 0.2 0.07 0.09

27.1 3.2995 −1.2452 0.2 0.07 0.09

21.9 3.0865 −1.1387 0.4 0.12 0.08

0.098 −2.3227 +1.5659 0.9 0.60 0.015

30.8828 3.4302 −1.3106 0.1 0.05 0.09

12.9851 2.5638 −0.8774 0.7 0.25 0.03

4.5132 1.5070 −0.3490 0.6 0.30 0.025

3.3351 1.2045 −0.1977 0.7 0.25 0.01

21.8369 3.0836 −1.1373 0.3 0.15 0.025

10.8374 2.3830 −0.7870 0.4 0.15 0.025

4.5141 1.5072 −0.3491 1.5 0.50 0.06

2.0769 0.7309 −0.0391 1.7 0.50 0.02

3.1573 1.1497 −0.1703 0.4 0.15 0.005
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CA

⎛
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Use Infinite System
Less Than Solution with Less

In Bounded Exact 1% Error Than 1% Error
Reservoirs CA ln CA for tDA > For tDA > for tDA <

0.5813 −0.5425 +0.6758 2.0 0.60 0.02

0.1109 −2.1991 +1.5041 3.0 0.60 0.005

5.3790 1.6825 −0.4367 0.8 0.30 0.01

2.6896 0.9894 −0.0902 0.8 0.30 0.01

0.2318 −1.4619 +1.1355 4.0 2.00 0.03

0.1155 −2.1585 +1.4838 4.0 2.00 0.01

2.3606 0.8589 −0.0249 1.0 0.40 0.025

Use (xe/xf)2 in place of A/rw
2 for fractured systems

2.6541 0.9761 −0.0835 0.175 0.08 cannot use

2.0348 0.7104 +0.0493 0.175 0.09 cannot use

1.9986 0.6924 +0.0583 0.175 0.09 cannot use

1.6620 0.5080 +0.1505 0.175 0.09 cannot use

1.3127 0.2721 +0.2685 0.175 0.09 cannot use

0.7887 −0.2374 +0.5232 0.175 0.09 cannot use

19.1 2.95 −1.07 — — —

25.0 3.22 −1.20 — — —

1
2

2 2458ln .
CA

⎛
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⎞
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Example 6-17

An oil well is developed on the center of a 40-acre square drilling pat-
tern. The well is producing at a constant flow rate of 800 STB/day under
a semisteady-state condition. The reservoir has the following properties:

φ = 15% h = 30 ft k = 200 md
μ = 1.5 cp Bo = 1.2 bbl/STB ct = 25 ×10−6 psi-1
pi = 4500 psi rw = 0.25 ft A = 40 acres

a. Calculate and plot the bottom-hole flowing pressure as a function of time.
b. Based on the plot, calculate the pressure decline rate. What is the

decline in the average reservoir pressure from t = 10 to t = 200 hr?

Solution

a. pwf calculations:

Step 1. From Table 6-3, determine CA:

CA = 30.8828

Step 2. Convert the area A from acres to ft2:

A = (40) (43,560) = 1,742,400 ft2

Step 3. Apply Equation 6-137:

Pwf = 4500 − 1.719 t − 58.536 log (2,027,436)

or

pwf = 4493.69 − 1.719 t

Step 4. Calculate pwf at different assumed times.

t, hr Pwf = 44369 − 1.719 t

10 4476.50
20 4459.31
50 4407.74

100 4321.79
200 4149.89

(text continued from page 424)



Step 5. Present the results of Step 4 in a graphical form as shown in
Figure 6-25.

b. It is obvious from Figure 6-25 and the above calculation that the bot-
tom-hole flowing pressure is declining at a rate of 1.719 psi/hr, or:

The significance of this example is that the rate of pressure decline
during the pseudosteady state is the same throughout the drainage
area. This means that the average reservoir pressure, pr, is declining at
the same rate of 1.719 psi, therefore the change in pr from 10 to 200
hours is:

Δp–r = (1.719)(200 − 10) = 326.6 psi

Example 6-18

An oil well is producing under a constant bottom-hole flowing pres-
sure of 1,500 psi. The current average reservoir pressure pr is 3,200 psi.

dp
dt

psi hr= −1 719. /
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Figure 6-25. Bottom-hole flowing pressure as a function of time.



The well is developed in the center of a 40-acre square drilling pattern.
Given the following additional information:

φ = 16% h = 15 ft k = 50 md
μ = 26 cp Bo = 1.15 bbl/STB ct = 10 × 10−6 psi−1

rw = 0.25 ft

calculate the flow rate.

Solution

Because the volumetric average pressure is given, solve for the flow
rate by applying Equation 6-138.

Radial Flow of Compressible Fluids (Gases)

The radial diffusivity equation as expressed by Equation 6-106 was
developed to study the performance of compressible fluid under
unsteady-state conditions. The equation has the following form:

For the semisteady-state flow, the rate of change of the real gas
pseudopressure with respect to time is constant, i.e.,

Using the same technique identical to that described previously for liq-
uids gives the following exact solution to the diffusivity equation:
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where Qg = gas flow rate, Mscf/day
T = temperature, °R
k = permeability, md

Two approximations to the above solution are widely used. These
approximations are:

• Pressure-squared approximation
• Pressure-approximation

Pressure-Squared Approximation Method

As outlined previously, the method provides us with compatible results
to that of the exact solution approach when p < 2,000. The solution has
the following familiar form:

The gas properties z– and μ are evaluated at:

Pressure-Approximation Method

This approximation method is applicable at p > 3,000 psi and has the
following mathematical form:

with the gas properties evaluated at:
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where Qg = gas flow rate, Mscf/day
k = permeability, md

B
–

g = gas formation volume factor at average pressure, bbl/scf

The gas formation volume factor is given by the following expression:

In deriving the flow equations, the following two main assumptions
were made:

• Uniform permeability throughout the drainage area
• Laminar (viscous) flow

Before using any of the previous mathematical solutions to the flow
equations, the solution must be modified to account for the possible devi-
ation from the above two assumptions. Introducing the following two
correction factors into the solution of the flow equation can eliminate the
above two assumptions:

• Skin factor
• Turbulent flow factor

Skin Factor

It is not unusual for materials such as mud filtrate, cement slurry, or
clay particles to enter the formation during drilling, completion, or
workover operations and reduce the permeability around the wellbore.
This effect is commonly referred to as a wellbore damage and the region
of altered permeability is called the skin zone. This zone can extend from
a few inches to several feet from the wellbore. Many other wells are
stimulated by acidizing or fracturing, which in effect increase the perme-
ability near the wellbore. Thus, the permeability near the wellbore is
always different from the permeability away from the well where the for-
mation has not been affected by drilling or stimulation. A schematic illus-
tration of the skin zone is shown in Figure 6-26.

Those factors that cause damage to the formation can produce addi-
tional localized pressure drop during flow. This additional pressure drop
is commonly referred to as Δpskin. On the other hand, well stimulation
techniques will normally enhance the properties of the formation and
increase the permeability around the wellbore, so that a decrease in pressure

B
z T
pg = 0 00504.
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drop is observed. The resulting effect of altering the permeability around
the well bore is called the skin effect.

Figure 6-27 compares the differences in the skin zone pressure drop
for three possible outcomes:

• First Outcome:
Δpskin > 0, indicates an additional pressure drop due to wellbore dam-
age, i.e., kskin < k.

• Second Outcome:
Δpskin < 0, indicates less pressure drop due to wellbore improvement,
i.e., kskin > k.

• Third Outcome:
Δpskin = 0, indicates no changes in the wellbore condition, i.e., kskin = k.

Hawkins (1956) suggested that the permeability in the skin zone, i.e.,
kskin, is uniform and the pressure drop across the zone can be approxi-
mated by Darcy’s equation. Hawkins proposed the following approach:

Δ Δ Δ
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Figure 6-26. Near wellbore skin effect.



Applying Darcy’s equation gives:

or

where k = permeability of the formation, md
kskin = permeability of the skin zone, md

The above expression for determining the additional pressure drop in
the skin zone is commonly expressed in the following form:

Δp
Q B

kh
s

Q B

kh
sskin

o o o o o o= ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

μ μ
0 00708

141 2
.

. (6-141)

Δp
Q B

kh
k

k
r
rskin

o o o

skin

skin

w
=

⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢

⎤

⎦
⎥

⎛
⎝⎜

⎞
⎠⎟

μ
0 00708

1
.

ln

Δp
Q B

h k
r
r

Q B

h k
r
rskin

o o o

skin

skin

w

o o o skin

w
=

⎡

⎣
⎢

⎤

⎦
⎥

⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢

⎤

⎦
⎥

⎛
⎝⎜

⎞
⎠⎟

μ μ
0 00708 0 00708.

ln
.

ln

Fundamentals of Reservoir Fluid Flow 433

Figure 6-27. Representation of positive and negative skin effects.



where s is called the skin factor and defined as:

Equation 6-143 provides some insight into the physical significance of
the sign of the skin factor. There are only three possible outcomes in
evaluating the skin factor s:

• Positive Skin Factor, s > 0
When a damaged zone near the wellbore exists, kskin is less than k and
hence s is a positive number. The magnitude of the skin factor increases
as kskin decreases and as the depth of the damage rskin increases.

• Negative Skin Factor, s < 0
When the permeability around the well kskin is higher than that of the
formation k, a negative skin factor exists. This negative factor indicates
an improved wellbore condition.

• Zero Skin Factor, s = 0
Zero skin factor occurs when no alternation in the permeability around
the wellbore is observed, i.e., kskin = k.

Equation 6-143 indicates that a negative skin factor will result in a
negative value of Δpskin. This implies that a stimulated well will require
less pressure drawdown to produce at rate q than an equivalent well with
uniform permeability. 

The proposed modification of the previous flow equation is based on the
concept that the actual total pressure drawdown will increase or decrease
by an amount of Δpskin. Assuming that (Δp)ideal represents the pressure
drawdown for a drainage area with a uniform permeability k, then:

(Δp)actual = (Δp)ideal + (Δp)skin

or

(pi − pwf)actual = (pi − pwf)ideal + Δpskin (6-143)

The above concept as expressed by Equation 6-144 can be applied to
all the previous flow regimes to account for the skin zone around the
wellbore as follows:
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Steady-State Radial Flow

Substituting Equations 6-27 and 6-142 into Equation 6-144 gives:

or

where Qo = oil flow rate, STB/day
k = permeability, md
h = thickness, ft
s = skin factor

Bo = oil formation volume factor, bbl/STB
μo = oil viscosity, cp
pi = initial reservoir pressure, psi

pwf = bottom hole flowing pressure, psi

Unsteady-State Radial Flow

• For Slightly Compressible Fluids:
Combining Equations 6-83 and 6-142 with that of Equation 6-144 yields:
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• For Compressible Fluids:
A similar approach to that of the above gives:

and, in terms of the pressure-squared approach, gives:

Pseudosteady-State Flow

• For Slightly Compressible Fluids:
Introducing the skin factor into Equation 6-135 gives:

• For Compressible Fluids:

or, in terms of the pressure-squared approximation, gives:

where Qg = gas flow rate, Mscf/day
k = permeability, md
T = temperature, °R
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(μ–g) = gas viscosity at average pressure p–, cp
z–g = gas compressibility factor at average pressure p–

Example 6-19

Calculate the skin factor resulting from the invasion of the drilling
fluid to a radius of 2 feet. The permeability of the skin zone is estimated
at 20 md as compared with the unaffected formation permeability of 60
md. The wellbore radius is 0.25 ft.

Solution

Apply Equation 6-143 to calculate the skin factor:

Matthews and Russell (1967) proposed an alternative treatment to the
skin effect by introducing the effective or apparent wellbore radius rwa

that accounts for the pressure drop in the skin. They define rwa by the fol-
lowing equation:

rwa = rwe−s (6-151)

All of the ideal radial flow equations can be also modified for the skin
by simply replacing wellbore radius rw with that of the apparent wellbore
radius rwa. For example, Equation 6-146 can be equivalently expressed as:

Turbulent Flow Factor

All of the mathematical formulations presented so far are based on the
assumption that laminar flow conditions are observed during flow. During
radial flow, the flow velocity increases as the wellbore is approached. This
increase in the velocity might cause the development of a turbulent flow
around the wellbore. If turbulent flow does exist, it is most likely to occur
with gases and causes an additional pressure drop similar to that caused by
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the skin effect. The term non-Darcy flow has been adopted by the industry to
describe the additional pressure drop due to the turbulent (non-Darcy) flow.

Referring to the additional real gas pseudopressure drop due to non-
Darcy flow as Δψ non-Darcy, the total (actual) drop is given by:

(Δψ)actual = (Δψ)ideal + (Δψ)skin + (Δψ)non-Darcy

Wattenburger and Ramey (1968) proposed the following expression
for calculating (Δψ)non-Darcy:

The above equation can be expressed in a more convenient form as:

(Δψ)non-Darcy = FQg
2 (6-154)

where F is called the non-Darcy flow coefficient and is given by:

where Qg = gas flow rate, Mscf/day
μgw = gas viscosity as evaluated at pwf, cp

γg = gas specific gravity
h = thickness, ft
F = non-Darcy flow coefficient, psi2/cp/(Mscf/day)2

β = turbulence parameter

Jones (1987) proposed a mathematical expression for estimating the
turbulence parameter β as:

β = 1.88 (10−10) (k)−1.47 (φ)−0.53 (6-156)

where k = permeability, md
φ = porosity, fraction

The term FQ2
g can be included in all the compressible gas flow equations

in the same way as the skin factor. This non-Darcy term is interpreted as
being a rate-dependent skin. The modification of the gas flow equations to
account for the turbulent flow condition is given below:
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Unsteady-State Radial Flow

The gas flow equation for an unsteady-state flow is given by Equation
6-147 and can be modified to include the additional drop in the real gas
potential as:

Equation 6-158 is commonly written in a more convenient form as:

where the term DQg is interpreted as the rate dependent skin factor.
The coefficient D is called the inertial or turbulent flow factor and
given by:

The true skin factor s, which reflects the formation damage or stimula-
tion, is usually combined with the non-Darcy rate dependent skin and
labeled as the apparent or total skin factor:

s′ = s + DQg (6-160)

or
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Equation 6-162 can be expressed in the pressure-squared approxima-
tion form as:

where Qg = gas flow rate, Mscf/day
t = time, hr
k = permeability, md

μi = gas viscosity as evaluated at pi, cp

Semisteady-State Flow

Equations 6-150 and 6-151 can be modified to account for the non-
Darcy flow as follows:

or in terms of the pressure-squared approach:

where the coefficient D is defined as:

Steady-State Flow

Similar to the above modification procedure, Equations 6-44 and 6-45
can be expressed as:
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where D is defined by Equation 6-166.

Example 6-20

A gas well has an estimated wellbore damage radius of 2 feet and an
estimated reduced permeability of 30 md. The formation has a perme-
ability and porosity of 55 md and 12%. The well is producing at a rate of
20 Mscf/day with a gas gravity of 0.6. The following additional data are
available:

rw = 0.25 h = 20′ T = 140°F μgw = 0.013 cp

Calculate the apparent skin factor.

Solution

Step 1. Calculate the skin factor from Equation 6-143

Step 2. Calculate the turbulence parameter β by applying Equation 6-155:

β = 1.88 (10)−10 (55)−1.47 (0.12)−0.53 = 159.904 × 106

Step 3. Calculate the non-Darcy flow coefficient from Equation 6-156:
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Step 4. Calculate the coefficient D from Equation 6-160:

Step 5. Estimate the apparent skin factor by applying Equation 6-161:

s′ = 1.732 + (1.805 × 10−4) (20,000) = 5.342

PRINCIPLE OF SUPERPOSITION

The solutions to the radial diffusivity equation as presented earlier in
this chapter appear to be applicable only for describing the pressure distri-
bution in an infinite reservoir that was caused by a constant production
from a single well. Since real reservoir systems usually have several wells
that are operating at varying rates, a more generalized approach is needed
to study the fluid flow behavior during the unsteady-state flow period.

The principle of superposition is a powerful concept that can be applied
to remove the restrictions that have been imposed on various forms of
solution to the transient flow equation. Mathematically the superposition
theorem states that any sum of individual solutions to the diffusivity equa-
tion is also a solution to that equation. This concept can be applied to
account for the following effects on the transient flow solution:

• Effects of multiple wells
• Effects of rate change
• Effects of the boundary
• Effects of pressure change

Slider (1976) presented an excellent review and discussion of the prac-
tical applications of the principle of superposition in solving a wide vari-
ety of unsteady-state flow problems.

Effects of Multiple Wells

Frequently, it is desired to account for the effects of more than one well
on the pressure at some point in the reservoir. The superposition concept
states that the total pressure drop at any point in the reservoir is the sum of
the pressure changes at that point caused by flow in each of the wells in the
reservoir. In other words, we simply superimpose one effect upon the other.

Consider Figure 6-28, which shows three wells that are producing at
different flow rates from an infinite acting reservoir, i.e., unsteady-state

D = = × −( . ) ( ) ( )
( ) ( )

.
0 14 55 20
1422 600
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flow reservoir. The principle of superposition shows that the total pres-
sure drop observed at any well, e.g., Well 1, is:

(Δp)total drop at well 1 = (Δp)drop due to well 1

+ (Δp)drop due to well 2

+ (Δp)drop due to well 3

The pressure drop at Well 1 due to its own production is given by the
log-approximation to the Ei-function solution presented by Equation
6-146, or:

where t = time, hr
s = skin factor
k = permeability, md

Qo1 = oil flow rate from Well 1

The pressure drop at Well 1 due to production at Wells 2 and 3 must be
written in terms of the Ei-function solution as expressed by Equation 6-78.
The log-approximation cannot be used because we are calculating the
pressure at a large distance r from the well, i.e., the argument x > 0.01, or:
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Figure 6-28. Well layout for Example 6-20.



where Qo1, Qo2, and Qo3 refer to the respective producing rates of Wells
1, 2, and 3.

The above computational approach can be used to calculate the pres-
sure at Wells 2 and 3. Further, it can be extended to include any number
of wells flowing under the unsteady-state flow condition. It should also
be noted that if the point of interest is an operating well, the skin factor s
must be included for that well only.

Example 6-21

Assume that the three wells as shown in Figure 6-28 are producing
under a transient flow condition for 15 hours. The following additional
data are available:

Qo1 = 100 STB/day h = 20′
Qo2 = 160 STB/day φ = 15%
Qo3 = 200 STB/day k = 40 md

pi = 4500 psi rw = 0.25′
Bo = 1.20 bbl/STB μo = 2.0 cp
ct = 20 × 10−6 psi−1 r1 = 400′

(s)well 1 = −0.5 r2 = 700′

If the three wells are producing at a constant flow rate, calculate the
sand face flowing pressure at Well 1.

Solution

Step 1. Calculate the pressure drop at Well 1 caused by its own produc-
tion by using Equation 6-146.
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Step 2. Calculate the pressure drop at Well 1 due to the production from
Well 2.

Step 3. Calculate pressure drop due to production from Well 3.

Step 4. Calculate total pressure drop at Well 1.

(Δp)total at well 1 = 270.2 + 4.41 + 0.08 = 274.69 psi

Step 5. Calculate pwf at Well 1.

pwf = 4500 − 274.69 = 4225.31 psi
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Effects of Variable Flow Rates

All of the mathematical expressions presented previously in this chapter
require that the wells produce at a constant rate during the transient flow
periods. Practically all wells produce at varying rates and, therefore, it is
important that we be able to predict the pressure behavior when the rate
changes. For this purpose, the concept of superposition states, “Every flow
rate change in a well will result in a pressure response which is indepen-
dent of the pressure responses caused by other previous rate changes.”
Accordingly, the total pressure drop that has occurred at any time is the sum-
mation of pressure changes caused separately by each net flow rate change.

Consider the case of a shut-in well, i.e., Q = 0, that was then allowed
to produce at a series of constant rates for the different time periods
shown in Figure 6-29. To calculate the total pressure drop at the sand
face at time t4, the composite solution is obtained by adding the individ-
ual constant-rate solutions at the specified rate-time sequence, or:

(Δp)total = (Δp)due to (Qo1 − 0) + (Δp)due to (Qo2 − Qo1)+ (Δp)due to (Qo3 − Qo2)

+ (Δp)due to (Qo4 − Qo3)

The above expression indicates that there are four contributions to the
total pressure drop resulting from the four individual flow rates.

The first contribution results from increasing the rate from 0 to Q1 and
is in effect over the entire time period t4, thus:

It is essential to notice the change in the rate, i.e., (new rate − old rate),
that is used in the above equation. It is the change in the rate that causes
the pressure disturbance. Further, it should be noted that the “time” in the
equation represents the total elapsed time since the change in the rate has
been in effect.

Second contribution results from decreasing the rate from Q1 to Q2 at
t1, thus:
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Using the same concept, the contributions from Q2 to Q3 and from Q3

to Q4 can be computed as:
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Figure 6-29. Production and pressure history of a well.



The above approach can be extended to model a well with several rate
changes. Note, however, the above approach is valid only if the well is
flowing under the unsteady-state flow condition for the total time elapsed
since the well began to flow at its initial rate.

Example 6-22

Figure 6-29 shows the rate history of a well that is producing under
transient flow condition for 15 hours. Given the following data:

pi = 5000 psi h = 20′
Bo = 1.1 bbl/STB φ = 15%
μo = 2.5 cp rw = 0.3′
ct = 20 × 10−6 psi−1 s = 0
k = 40 md

calculate the sand face pressure after 15 hours. 

Solution

Step 1. Calculate the pressure drop due to the first flow rate for the entire
flow period.

Step 2. Calculate the additional pressure change due to the change of the
flow rate from 100 to 70 STB/day.
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Step 3. Calculate the additional pressure change due to the change of the
flow rate from 70 to 150 STB/day.

Step 4. Calculate the additional pressure change due to the change of the
flow rate from 150 to 85 STB/day.

Step 5. Calculate the total pressure drop:

(Δp)total = 319.6 + (−94.85) + 249.18 + (−190.44) = 283.49 psi

Step 6. Calculate wellbore pressure after 15 hours of transient flow:

pwf = 5000 − 283.49 = 4716.51 psi

Effects of the Reservoir Boundary

The superposition theorem can also be extended to predict the pressure
of a well in a bounded reservoir. Consider Figure 6-30, which shows a well
that is located a distance r from the no-flow boundary, e.g., sealing fault. 
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The no-flow boundary can be represented by the following pressure
gradient expression:

Mathematically, the above boundary condition can be met by placing
an image well, identical to that of the actual well, on the other side of the
fault at exactly distance r. Consequently, the effect of the boundary on
the pressure behavior of a well would be the same as the effect from an
image well located a distance 2r from the actual well.

In accounting for the boundary effects, the superposition method is
frequently called the method of images. Thus, for the problem of the sys-
tem configuration given in Figure 6-30, the problem reduces to one of

∂
∂

⎛
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⎞
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Figure 6-30. Method of images in solving boundary problems.



determining the effect of the image well on the actual well. The total
pressure drop at the actual well will be the pressure drop due to its own
production plus the additional pressure drop caused by an identical well
at a distance of 2r, or:

(Δp)total = (Δp)actual well + (Δp)due to image well

or

Notice that this equation assumes the reservoir is infinite except for
the indicated boundary. The effect of boundaries is always to cause
greater pressure drop than those calculated for infinite reservoirs.

The concept of image wells can be extended to generate the pressure
behavior of a well located within a variety of boundary configurations.

Example 6-23

Figure 6-31 shows a well located between two sealing faults at 200
and 100 feet from the two faults. The well is producing under a transient
flow condition at a constant flow rate of 200 STB/day. 

Given:

pi = 500 psi k = 600 md
Bo = 1.1 bbl/STB φ = 17%
μo = 2.0 cp h = 25 ft
rw = 0.3 ft s = 0
ct = 25 × 10−6 psi−1

calculate the sand face pressure after 10 hours.
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Solution

Step 1. Calculate the pressure drop due to the actual well flow rate.
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Figure 6-31. Well layout for Example 6-31.



Step 2. Determine the additional pressure drop due to the first fault (i.e.,
image well 1):

Step 3. Calculate the effect of the second fault (i.e., image well 2):

Step 4. Total pressure drop is:

(Δp)total = 270.17 + 10.64 + 1.0 = 281.8 psi

Step 5. pwf = 5000 − 281.8 = 4718.2 psi

Accounting for Pressure-Change Effects

Superposition is also used in applying the constant-pressure case. Pres-
sure changes are accounted for in this solution in much the same way
that rate changes are accounted for in the constant rate case. The descrip-
tion of the superposition method to account for the pressure-change
effect is fully described in the Water Influx section in this book.

TRANSIENT WELL TESTING

Detailed reservoir information is essential to the petroleum engineer in
order to analyze the current behavior and future performance of the reser-
voir. Pressure transient testing is designed to provide the engineer with a
quantitative analysis of the reservoir properties. A transient test is essen-
tially conducted by creating a pressure disturbance in the reservoir and
recording the pressure response at the wellbore, i.e., bottom-hole flowing
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pressure pwf, as a function of time. The pressure transient tests most com-
monly used in the petroleum industry include:

• Pressure drawdown
• Pressure buildup
• Multirate
• Interference
• Pulse
• Drill stem
• Fall off
• Injectivity 
• Step rate

It has long been recognized that the pressure behavior of a reservoir
following a rate change directly reflects the geometry and flow properties
of the reservoir. Information available from a well test includes:

• Effective permeability
• Formation damage or stimulation
• Flow barriers and fluid contacts
• Volumetric average reservoir pressure
• Drainage pore volume
• Detection, length, capacity of fractures 
• Communication between wells

Only the drawdown and buildup tests are briefly described in the fol-
lowing two sections. There are several excellent books that comprehen-
sively address the subject of well testing, notably:

• John Lee, Well Testing (1982)
• C. S. Matthews and D. G. Russell, Pressure Buildup and Flow Test in

Wells (1967)
• Robert Earlougher, Advances in Well Test Analysis (1977)
• Canadian Energy Resources Conservation Board, Theory and Practice

of the Testing of Gas Wells (1975)
• Roland Horn, Modern Well Test Analysis (1995)

Drawdown Test

A pressure drawdown test is simply a series of bottom-hole pressure
measurements made during a period of flow at constant producing rate.

454 Reservoir Engineering Handbook



Usually the well is shut-in prior to the flow test for a period of time suffi-
cient to allow the pressure to equalize throughout the formation, i.e., to
reach static pressure. A schematic of the ideal flow rate and pressure his-
tory is illustrated by Figure 6-32.

The fundamental objectives of drawdown testing are to obtain the
average permeability, k, of the reservoir rock within the drainage area of
the well and to assess the degree of damage of stimulation induced in the
vicinity of the wellbore through drilling and completion practices. Other
objectives are to determine the pore volume and to detect reservoir inho-
mogeneities within the drainage area of the well.

During flow at a constant rate of Qo, the pressure behavior of a well in
an infinite-acting reservoir (i.e., during the unsteady-state flow period) is
given by Equation 6-146, as:
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Figure 6-32. Idealized drawdown test.



where k = permeability, md
t = time, hr

rw = wellbore radius
s = skin factor

The above expression can be written as:

Equation 6-170 is essentially an equation of a straight line and can be
expressed as:

pwf = a + m log (t) (6-170)

where

The slope m is given by:

Equation 6-171 suggests that a plot of pwf versus time t on semilog
graph paper would yield a straight line with a slope m in psi/cycle. This
semilog straight-line relationship is illustrated by Figure 6-33.

Equation 6-172 can be also rearranged for the capacity kh of the
drainage area of the well. If the thickness is known, then the average per-
meability is given by:
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where k = average permeability, md
m = slope, psi/cycle. Notice, slope m is negative.

Clearly, kh/μ or k/μ may be also estimated.
The skin effect can be obtained by rearranging Equation 6-170, as:

or, more conveniently, if pwf = p1 hr, which is found on the extension of
the straight line at log t (1 hour), then: 
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In Equation 6-174, p1 hr must be from the semilog straight line. If pres-
sure data measured at 1 hour do not fall on that line, the line must be
extrapolated to 1 hour and the extrapolated value of p1 hr must be used in
Equation 6-174. This procedure is necessary to avoid calculating an incor-
rect skin by using a wellbore-storage-influenced pressure. Figure 6-33
illustrates the extrapolation to p1 hr. 

If the drawdown test is long enough, bottom-hole pressure will deviate
from the semilog straight line and make the transition from infinite-act-
ing to pseudosteady state.

It should be pointed out that the pressure drop due to the skin, as
expressed by Equation 6-142, can be written in terms of the transient
flow slope, m, by combining the equations:

Combining the two expressions gives

Example 6-242

Estimate oil permeability and skin factor from the drawdown data of
Figure 6-34. 

The following reservoir data are available:

h = 130 ft φ = 20 percent
rw = 0.25 ft pi = 1154 psi
Qo = 348 STB/D m = −22 psi/cycle
Bo = 1.14 bbl/STB
μo = 3.93 cp
ct = 8.74 × 10−6 psi−1

Assuming that the wellbore storage effects are not significant, calculate:

• Permeability
• Skin factor

Δp m ss = 0 87.
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“Advances in Well Test Analysis,” Monograph Series, SPE, Dallas (1977).



Solution

Step 1. From Figure 6-34, calculate p1 hr:

p1 hr = 954 psi

Step 2. Determine the slope of the transient flow line:

m = −22 psi/cycle

Step 3. Calculate the permeability by applying Equation 6-173:

k md= −
−

=( . ) ( ) ( . ) ( . )
( )( )

162 6 348 1 14 3 93
22 130

89
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Figure 6-34. Earlougher’s semilog data plot for the drawdown test. (Permission to
publish by the SPE, copyright SPE, 1977.)



Step 4. Solve for the skin factor s by using Equation 6-174:

Basically, well test analysis deals with the interpretation of the well-
bore pressure response to a given change in the flow rate (from zero to a
constant value for a drawdown test, or from a constant rate to zero for a
buildup test). Unfortunately, the producing rate is controlled at the sur-
face, not at the sand face. Because of the wellbore volume, a constant
surface flow rate does not ensure that the entire rate is being produced
from the formation. This effect is due to wellbore storage. Consider the
case of a drawdown test. When the well is first open to flow after a shut-
in period, the pressure in the wellbore drops. This drop in the wellbore
pressure causes the following two types of wellbore storage:

• Wellbore storage effect caused by fluid expansion
• Wellbore storage effect caused by changing fluid level in the casing-

tubing annulus.

As the bottom hole pressure drops, the wellbore fluid expands and,
thus, the initial surface flow rate is not from the formation, but essen-
tially from the fluid that had been stored in the wellbore. This is defined
as the wellbore storage due to fluid expansion. 

The second type of wellbore storage is due to a changing of the annu-
lus fluid level (falling level during a drawdown test and rising fluid level
during a pressure buildup test). When the well is open to flow during a
drawdown test, the reduction in pressure causes the fluid level in the
annulus to fall. This annulus fluid production joins that from the forma-
tion and contributes to the total flow from the well. The falling fluid level
is generally able to contribute more fluid than that by expansion.

The above discussion suggests that part of the flow will be contributed
by the wellbore instead of the reservoir, i.e.,

q = qf + qwb

where q = surface flow rate, bbl/day
qf = formation flow rate, bbl/day
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qwb = flow rate contributed by the wellbore, bbl/day

As production time increases, the wellbore contribution decreases, and
the formation rate increases until it eventually equals the surface flow
rate. During this period when the formation rate is changed, the mea-
sured drawdown pressures will not produce the ideal semilog straight-
line behavior that is expected during transient flow. This indicates that
the pressure data collected during the duration of the wellbore storage
effect cannot be analyzed by using conventional methods.

Each of the above two effects can be quantified in terms of the well-
bore storage factor C, which is defined as:

where C = wellbore storage volume, bbl/psi
ΔVwb = change in the volume of fluid in the wellbore, bbl

The above relationship can be applied to mathematically represent the
individual effect of wellbore fluid expansion and falling (or rising) fluid
level, to give:

• Wellbore Storage Effect Due to Fluid Expansion

C = Vwb cwb

where Vwb = total wellbore fluid volume, bbl
cwb = average compressibility of fluid in the wellbore, psi−1

• Wellbore Storage Effect Due to Changing Fluid Level
If Aa is the cross-sectional area of the annulus, and ρ is the average

fluid density in the wellbore, the wellbore storage coefficient is given by:

with:

where Aa = annulus cross-sectional area, ft2
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ODT = outside diameter of the production tubing, in.
IDC = inside diameter of the casing, in.

ρ = wellbore fluid density, lb/ft3

This effect is essentially small if a packer is placed near the producing
zone. The total storage effect is the sum of both effects. It should be
noted during oil well testing that the fluid expansion is generally
insignificant due to the small compressibility of liquids. For gas wells,
the primary storage effect is due to gas expansion.

To determine the duration of the wellbore storage effect, it is conve-
nient to express the wellbore storage factor in a dimensionless form as:

where CD = dimensionless wellbore storage factor
C = wellbore storage factor, bbl/psi
ct = total compressibility coefficient, psi−1

rw = wellbore radius, ft
h = thickness, ft

Horne (1995) and Earlougher (1977), among other authors, have indi-
cated that the wellbore pressure is directly proportional to the time during
the wellbore storage-dominated period of the test and is expressed by:

pD = tD/CD

where pD = dimensionless pressure during wellbore storage domination
time

tD = dimensionless time

Taking the logarithm of both sides of the above relationship, gives:

log (pD) = log (tD) − log (CD)

The above expression has a characteristic that is diagnostic of wellbore
storage effects. It indicates that a plot of pD versus tD on a log-log scale
will yield as straight line of a unit slope during wellbore storage domina-
tion. Since pD is proportional to Δp and tD is proportional to time, it is
convenient to log (pi − pwf) versus log (t) and observe where the plot has
a slope of one cycle in pressure per cycle in time.
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The log-log plot is a valuable aid for recognizing wellbore storage effects
in transient tests (e.g., drawdown or buildup tests) when early-time pressure
recorded data are available. It is recommended that this plot be made a part
of transient test analysis. As wellbore storage effects become less severe, the
formation begins to influence the bottom-hole pressure more and more, and
the data points on the log-log plot fall below the unit-slope straight line
and signify the end of the wellbore storage effect. At this point, wellbore
storage is no longer important and standard semilog data-plotting analysis
techniques apply. As a rule of thumb, that time usually occurs about 1 to
11⁄2 cycles in time after the log-log data plot starts deviating significantly
from the unit slop. This time may be estimated from:

tD > (60 + 3.5s) CD

or approximately:

where t = total time that marks the end of wellbore storage effect and
the beginning of the semilog straight line, hr

k = permeability, md
s = skin factor

m = viscosity, cp
C = wellbore storage coefficient, bbl/psi

Example 6-25

The following data are given for an oil well that is scheduled for a
drawdown test:

• Volume of fluid in the wellbore = 180 bbls
• Tubing outside diameter = 2 inches
• Production casing inside diameter = 7.675 inches
• Average oil density in the wellbore = 45 lb/ft3

• h = 20 ft φ = 15% rw = 0.25 ft
μo = 2 cp k = 30 md s = 0
ct = 20 × 10−6 psi−1 co = 10 × 10−6 psi−1

If this well is placed under a constant production rate, how long will it
take for wellbore storage effects to end?
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Solution

Step 1. Calculate the cross-sectional area of the annulus Aa:

Step 2. Calculate the wellbore storage factor caused by fluid expansion:

C = Vwb cwb

C = (180) (10 × 10−6) = 0.0018 bbl/psi

Step 3. Determine the wellbore storage factor caused by the falling fluid
level:

Step 4. Calculate the total wellbore storage coefficient:

C = 0.0018 + 0.1707 = 0.1725 bbl/psi

The above calculations show that the effect of fluid expansion
can generally be neglected in crude oil systems.

Step 5. Determine the time required for wellbore storage influence to end
from:

The straight-line relationship as expressed by Equation 6-171 is only
valid during the infinite-acting behavior of the well. Obviously, reser-
voirs are not infinite in extent, thus the infinite-acting radial flow period
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cannot last indefinitely. Eventually the effects of the reservoir boundaries
will be felt at the well being tested. The time at which the boundary
effect is felt is dependent on the following factors:

• Permeability k
• Total compressibility ct

• Porosity φ
• Viscosity μ
• Distance to the boundary
• Shape of the drainage area

Earlougher (1977) suggests the following mathematical expression for
estimating the duration of the infinite-acting period.

where teia = time to the end of infinite-acting period, hr
A = well drainage area, ft2

ct = total compressibility, psi−1

(tDA)eia = dimensionless time to the end of the infinite-acting period

Earlougher’s expression can be used to predict the end of transient
flow in a drainage system of any geometry by obtaining the value of
(tDA)eia from Table 6-3 as listed under “Use Infinite System Solution
with Less Than 1% Error for tD <.” For example, for a well centered in
a circular reservoir, (tDA)eia = 0.1, and accordingly:

Hence, the specific steps involved in a drawdown test analysis are:

1. Plot (pi − pwf) versus t on a log-log scale.
2. Determine the time at which the unit slope line ends.
3. Determine the corresponding time at 11⁄2 log cycle, ahead of the

observed time in Step 2. This is the time that marks the end of the
wellbore storage effect and the start of the semilog straight line.

4. Estimate the wellbore storage coefficient from:

t
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where t and Δp are values read from a point on the log-log unit-slope
straight line and q is the flow rate in bbl/day.

5. Plot pwf versus t on a semilog scale.
6. Determine the start of the straight-line portion as suggested in Step 3

and draw the best line through the points.
7. Calculate the slope of the straight line and determine the permeability k

and skin factor s by applying Equations 6-173 and 6-174, respectively.
8. Estimate the time to the end of the infinite-acting (transient flow) 

period, i.e., teia, which marks the beginning of the pseudosteady-state
flow.

9. Plot all the recorded pressure data after teia as a function of time on a
regular Cartesian scale. These data should form a straight-line rela-
tionship.

10. Determine the slope of the pseudosteady-state line, i.e., dp/dt (com-
monly referred to as m′) and use Equation 6-128 to solve for the
drainage area “A,”

where m′ = slope of the semisteady-state Cartesian straight line
Q = fluid flow rate, STB/day
B = formation volume factor, bbl/STB

11. Calculate the shape factor CA from an expression that has been devel-
oped by Earlougher (1977). Earlougher has shown that the reservoir
shape factor can be estimated from the following relationship:

where m = slope of transient semilog straight line, psi/log cycle
m′ = slope of the semisteady-state Cartesian straight line

p1hr = pressure at t = 1 hr from semilog straight line, psi
pint = pressure at t = 0 from semisteady-state Cartesian straight

line, psi
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12. Use Table 6-4 to determine the drainage configuration of the tested
well that has a value of the shape factor CA closest to that of the cal-
culated one, i.e., Step 11.

Pressure Buildup Test

The use of pressure buildup data has provided the reservoir engineer
with one more useful tool in the determination of reservoir behavior. Pres-
sure buildup analysis describes the build up in wellbore pressure with time
after a well has been shut-in. One of the principal objectives of this analy-
sis is to determine the static reservoir pressure without waiting weeks or
months for the pressure in the entire reservoir to stabilize. Because the
buildup in wellbore pressure will generally follow some definite trend, it
has been possible to extend the pressure buildup analysis to determine:

• Effective reservoir permeability
• Extent of permeability damage around the wellbore
• Presence of faults and to some degree the distance to the faults
• Any interference between producing wells 
• Limits of the reservoir where there is not a strong water drive or where

the aquifer is no larger than the hydrocarbon reservoir 

Certainly all of this information will probably not be available from
any given analysis, and the degree of usefulness of any of this informa-
tion will depend on the experience in the area and the amount of other
information available for correlation purposes.

The general formulas used in analyzing pressure buildup data come
from a solution of the diffusivity equation. In pressure buildup and draw-
down analyses, the following assumptions, with regard to the reservoir,
fluid, and flow behavior, are usually made:

Reservoir:

• Homogeneous
• Isotropic
• Horizontal of uniform thickness

Fluid:

• Single phase
• Slightly compressible
• Constant μo and Bo
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Flow:

• Laminar flow
• No gravity effects

Pressure buildup testing requires shutting in a producing well. The
most common and the simplest analysis techniques require that the well
produce at a constant rate, either from startup or long enough to establish
a stabilized pressure distribution, before shut-in. Figure 6-35 schemati-
cally shows rate and pressure behavior for an ideal pressure buildup test.
In that figure, tp is the production time and Δt is running shut-in time.
The pressure is measured immediately before shut-in and is recorded as a
function of time during the shut-in period. The resulting pressure buildup
curve is analyzed for reservoir properties and wellbore condition.

Stabilizing the well at a constant rate before testing is an important
part of a pressure buildup test. If stabilization is overlooked or is impos-
sible, standard data analysis techniques may provide erroneous informa-
tion about the formation.

A pressure buildup test is described mathematically by using the prin-
ciple of superposition. Before the shut-in, the well is allowed to flow at a
constant flow rate of Qo STB/day for tp days. At the time corresponding
to the point of shut-in, i.e., tp, a second well, superimposed over the loca-
tion of the first well, is opened to flow at a constant rate equal to −Qo

STB/day for Δt days. The first well is allowed to continue to flow at +Qo

STB/day. When the effects of the two wells are added, the result is that a
well has been allowed to flow at rate Q for time tp and then shut-in for
time Δt. This simulates the actual test procedure. The time corresponding
to the point of shut-in, tp, can be estimated from the following equation:

(6-175)

where Np = well cumulative oil produced before shut-in, STB
Qo = stabilized well flow rate before shut-in, STB/day
tp = total production time, hr

Applying the superposition principle to a shut-in well, the total pres-
sure change, i.e., (pi − pws), which occurs at the wellbore during the shut-
in time Δt, is essentially the sum of the pressure change caused by the
constant flow rate Q and that of −Q, or:

t
N

QP
P

o

=
24
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pi − pws = (pi − pwf)Qo – 0 + (pi − pwf)0 – Qo

Substituting Equation 6-146 for each of the terms on the right-hand
side of the above relationship gives:

p p
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Expanding this equation and canceling terms,

where pi = initial reservoir pressure, psi
pws = sand-face pressure during pressure buildup, psi

tp = flowing time before shut-in, hr
Δt = shut-in time, hr

The pressure buildup equation, i.e., Equation 6-176, was introduced by
Horner (1951) and is commonly referred to as the Horner equation.

Equation 6-177 suggests that a plot of pws versus (tp + Δt)/Δt would
produce a straight-line relationship with intercept pi and slope of −m,
where:

or

This plot, commonly referred to as the Horner plot, is illustrated in Fig-
ure 6-36. Note that on the Horner plot, the scale of time ratio increases
from left to right. Because of the form of the ratio, however, the shut-in
time Δt increases from right to left. It is observed from Equation 6-177 that
pws = pi when the time ratio is unity. Graphically this means that the initial
reservoir pressure, pi, can be obtained by extrapolating the Horner plot
straight line to (tp + Δt)/Δt = 1.

Earlougher (1977) points out that a result of using the superposition
principle is that skin factor, s, does not appear in the general pressure
buildup equation, Equation 6-176. As a result, skin factor does not appear
in the simplified equation for the Horner plot, Equation 6-177. That
means the Horner-plot slope is not affected by the skin factor; however,
the skin factor still does affect the shape of the pressure buildup data. In
fact, an early-time deviation from the straight line can be caused by skin
factor as well as by wellbore storage, as indicated in Figure 6-36. The
deviation can be significant for the large negative skins that occur in
hydraulically fractured wells. In any case, the skin factor does affect
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flowing pressure before shut-in, so skin may be estimated from the
buildup test data plus the flowing pressure immediately before the
buildup test:

where pwf (Δt = 0) = observed flowing bottom-hole pressure immediately
before shut-in

m = slope of the Horner plot
k = permeability, md
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Δpskin = 0.87 m s (6-179)

The value of p1 hr must be taken from the Horner straight line. Fre-
quently, pressure data do not fall on the straight line at 1 hour because of
wellbore storage effects or large negative skin factors. In that case, the
semilog line must be extrapolated to 1 hour and the corresponding pres-
sure is read.

It should be pointed out that when a well is shut in for a pressure buildup
test, the well is usually closed at the surface rather than the sand face. Even
though the well is shut-in, the reservoir fluid continues to flow and accu-
mulates in the wellbore until the well fills sufficiently to transmit the effect
of shut-in to the formation. This “after-flow” behavior is caused by the
wellbore storage, and it has a significant influence on pressure buildup
data. During the period of wellbore storage effects, the pressure data points
fall below the semilog straight line. The duration of those effects may be
estimated by making the log-log data plot described previously. For pres-
sure buildup testing, plot log [pws − pwf] versus log (Δt). The bottom-hole
flow pressure pwf is observed flowing pressure immediately before shut-in.
When wellbore storage dominates, that plot will have a unit-slope straight
line; as the semilog straight line is approached, the log-log plot bends over
to a gently curving line with a low slope. 

In all pressure buildup test analyses, the log-log data plot should be
made before the straight line is chosen on the semilog data plot. This log-
log plot is essential to avoid drawing a semilog straight line through the
wellbore storage-dominated data. The beginning of the semilog line can
be estimated by observing when the data points on the log-log plot reach
the slowly curving low-slope line and adding 1 to 1.5 cycles in time after
the end of the unit-slope straight line. Alternatively, the time to the begin-
ning of the semilog straight line can be estimated from:

where Δt = shut-in time, hr
C = calculated wellbore storage coefficient, bbl/psi
k = permeability, md
s = skin factor 
h = thickness, ft

Δ
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Example 6-263

Table 6-5 shows pressure buildup data from an oil well with an esti-
mated drainage radius of 2,640 ft.

Table 6-5
Earlougher’s Pressure Buildup Data

(Permission to publish by the SPE, copyright SPE, 1977)

Δt tp + Δt (tp + Δt) pws
(hours) (hours) Δt (psig)

0.0 — — 2761
0.10 310.10 3101 3057
0.21 310.21 1477 3153
0.31 310.31 1001 3234
0.52 310.52 597 3249
0.63 310.63 493 3256
0.73 310.73 426 3260
0.84 310.84 370 3263
0.94 310.94 331 3266
1.05 311.05 296 3267
1.15 311.15 271 3268
1.36 311.36 229 3271
1.68 311.68 186 3274
1.99 311.99 157 3276
2.51 312.51 125 3280
3.04 313.04 103 3283
3.46 313.46 90.6 3286
4.08 314.08 77.0 3289
5.03 315.03 62.6 3293
5.97 315.97 52.9 3297
6.07 316.07 52.1 3297
7.01 317.01 45.2 3300
8.06 318.06 39.5 3303
9.00 319.00 35.4 3305

10.05 320.05 31.8 3306
13.09 323.09 24.7 3310
16.02 326.02 20.4 3313
20.00 330.00 16.5 3317
26.07 336.07 12.9 3320
31.03 341.03 11.0 3322
34.98 344.98 9.9 3323
37.54 347.54 9.3 3323
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Before shut-in, the well had produced at a stabilized rate of 4,900
STB/day for 310 hours. Known reservoir data are:

re = 2640 ft
depth = 10476 ft

rw = 0.354 ft
ct = 22.6 × 10−6 psi−1

Qo = 4900 STB/D
h = 482 ft

pwf(Δt = 0) = 2761 psig
μo = 0.20 cp
φ = 0.09

Bo = 1.55 bbl/STB
casing ID = 0.523 ft

tp = 310 hours

Calculate

• Average permeability k
• Skin factor
• Pressure drop due to skin

Solution

Step 1. Plot pws versus (tp + Δt)/Δt on a semilog scale as shown in Figure
6-37.

Step 2. Identify the correct straight-line portion of the curve and deter-
mine the slope m to give:

m = 40 psi/cycle

Step 3. Calculate the average permeability by using Equation 6-178 to give:

Step 4. Determine pwf after 1 hour from the straight-line portion of the
curve to give:

p1 hr = 3266 psi

k md= =( . ) ( , ) ( . ) ( . )
( ) ( )

.
162 6 4 900 1 55 0 22

40 482
12 8

474 Reservoir Engineering Handbook



Step 5. Calculate the skin factor by applying Equation 6-179.

Step 6. Calculate the pressure drop due to skin from:

Δpskin = 0.87ms = 0.87 (40) (8.6) = 299 psia
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Figure 6-37. Earlougher’s semilog data plot for the buildup test. (Permission to
publish by the SPE, copyright SPE, 1977.)



PROBLEMS

1. An incompressible fluid flows in a linear porous media with the fol-
lowing properties.

L = 2500 ft h = 30 ft width = 500 ft
k = 50 md φ = 17% μ = 2 cp

inlet pressure = 2100 psi Q = 4 bbl/day ρ = 45 lb/ft3

Calculate and plot the pressure profile throughout the linear system.
2. Assume the reservoir linear system as described in problem 1 is tilted

with a dip angle of 7°. Calculate the fluid potential through the linear
system.

3. A 0.7 specific gravity gas is flowing in a linear reservoir system at
150°F. The upstream and downstream pressures are 2,000 and 1,800
psi, respectively. The system has the following properties:

L = 2000 ft W = 300 ft h = 15 ft
k = 40 md φ = 15%

Calculate the gas flow rate.
4. An oil well is producing a crude oil system at 1,000 STB/day and

2,000 psi of bottom-hole flowing pressure. The pay zone and the pro-
ducing well have the following characteristics:

h = 35 ft rw = 0.25 ft drainage area = 40 acres
API = 45° γg = 0.72 Rs = 700 scf/STB

k = 80 md T = 100°F

Assuming steady-state flowing conditions, calculate and plot the
pressure profile around the wellbore.

5. Assuming steady-state flow and incompressible fluid, calculate the
oil flow rate under the following conditions:

pe = 2500 psi pwf = 2000 psi re = 745 ft
rw = 0.3 ft μo = 2 cp Bo = 1.4 bbl/STB
h = 30 ft k = 60 md
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6. A gas well is flowing under a bottom-hole flowing pressure of 900
psi. The current reservoir pressure is 1,300 psi. The following addi-
tional data are available:

T = 140°F γg = 0.65 rw = 0.3 ft
k = 60 md h = 40 ft re = 1000 ft

Calculate the gas flow rate by using a:
• Real gas pseudo pressure approach
• Pressure-squared method

7. An oil well is producing a stabilized flow rate of 500 STB/day under
a transient flow condition. Given:

Bo = 1.1 bbl/STB μo = 2 cp ct = 15 × 10−6 psi−1

ko = 50 md h = 20 ft φ = 20%
rw = 0.3 ft pi = 3500 psi

Calculate and plot the pressure profile after 1, 5, 10, 15, and 20 hours.
8. An oil well is producing at a constant flow rate of 800 STB/day

under a transient flow condition. The following data are available:

Bo = 1.2 bbl/STB μo = 3 cp ct = 15 × 10−6 psi−1

ko = 100 md h = 25 ft φ = 15%
rw = 0.5 pi = 4000 psi re = 1000 ft

Using the Ei-function approach and the pD-method, calculate the bot-
tom-hole flowing pressure after 1, 2, 3, 5, and 10 hr. Plot the results
on a semi log scale and Cartesian scale.

9. A well is flowing under a drawdown pressure of 350 psi and pro-
duces at a constant flow rate of 300 STB/day. The net thickness is 25
ft. Given:

re = 660 ft rw = 0.25 ft μo = 1.2 cp Bo = 1.25 bbl/STB

Calculate:
• Average permeability
• Capacity of the formation
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10. An oil well is producing from the center of 40-acre-square drilling
pattern. Given:

φ = 20% h = 15 ft k = 60 md
μo = 1.5 cp Bo = 1.4 bbl/STB rw = 0.25 ft
pr = 2000 psi pwf = 1500 psi

Calculate the oil flow rate.
11. A shut-in well is located at a distance of 700 ft from one well and

1100 ft from a second well. The first well flows for 5 days at 180
STB/day, at which time the second well begins to flow at 280
STB/day. Calculate the pressure drop in the shut-in well when the
second well has been flowing for 7 days. The following additional
data are given:

pi = 3000 psi Bo = 1.3 bbl/STB μo = 1.2 cp h = 60 ft
ct = 15 × 10−6 psi−1 φ = 15% k = 45 md

12. A well is opened to flow at 150 STB/day for 24 hours. The flow rate
is then increased to 360 STB/day and lasted for another 24 hours. The
well flow rate is then reduced to 310 STB/day for 16 hours. Calculate
the pressure drop in a shut-in well 700 ft away from the well given:

φ = 15% h = 20 ft k = 100 md
μo = 2 cp Bo = 1.2 bbl/STB rw = 0.25 ft
pi = 3000 psi ct = 12 × 10−6 psi−1

13. A well is flowing under unsteady-state flowing conditions for 5 days
at 300 STB/day. The well is located at 350 ft and 420 ft distance from
two sealing faults. Given:

φ = 17% ct = 16 × 10−6 psi−1 k = 80 md
pi = 3000 psi Bo = 1.3 bbl/STB μo = 1.1 cp
rw = 0.25 ft h = 25 ft

Calculate the pressure in the well after 5 days.
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14. A drawdown test was conducted on a new well with results as given
below:

t, hr pwf, psi

1.50 2978
3.75 2949
7.50 2927

15.00 2904
37.50 2876
56.25 2863
75.00 2848

112.50 2810
150.00 2790
225.00 2763

Given:

pi = 3400 psi h = 25 ft Q = 300 STB/day
ct = 18 × 10−6 psi−1 μo = 1.8 cp Bo = 1.1 bbl/STB
rw = 0.25 ft φ = 12%

Assuming no wellbore storage, calculate:

• Average permeability
• Skin factor

15. A drawdown test was conducted on a discovery well. The well was
flowed at a constant flow rate of 175 STB/day. The fluid and reser-
voir data are given below:

Swi = 25% φ = 15% h = 30 ft ct = 18 × 10−6 psi−1

rw = 0.25 ft pi = 4680 psi μo = 1.5 cp Bo = 1.25 bbl/STB
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The drawdown test data are given below:

t, hr pwf , psi

0.6 4388
1.2 4367
1.8 4355
2.4 4344
3.6 4334
6.0 4318
8.4 4309

12.0 4300
24.0 4278
36.0 4261
48.0 4258
60.0 4253
72.0 4249
84.0 4244
96.0 4240

108.0 4235
120.0 4230
144.0 4222
180.0 4206

Calculate:

• Drainage radius
• Skin factor
• Oil flow rate at a bottom-hole flowing pressure of 4,300 psi, assum-

ing a semisteady-state flowing condition.

16. A pressure build up test was conducted on a well that had been pro-
ducing at 146 STB/day for 53 hours. The reservoir and fluid data are
given below.

Bo = 1.29 bbl/STB μo = 0.85 cp ct = 12 × 10−6 psi−1

φ = 10% pwf = 1426.9 psig A = 20 acres
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The build up data are as follows:

Time, hr pws, psig

0.167 1451.5
0.333 1476.0
0.500 1498.6
0.667 1520.1
0.833 1541.5
1.000 1561.3
1.167 1581.9
1.333 1599.7
1.500 1617.9
1.667 1635.3
2.000 1665.7
2.333 1691.8
2.667 1715.3
3.000 1736.3
3.333 1754.7
3.667 1770.1
4.000 1783.5
4.500 1800.7
5.000 1812.8
5.500 1822.4
6.000 1830.7
6.500 1837.2
7.000 1841.1
7.500 1844.5
8.000 1846.7
8.500 1849.6
9.000 1850.4

10.000 1852.7
11.000 1853.5
12.000 1854.0
12.667 1854.0
14.620 1855.0

Calculate:

• Average reservoir pressure
• Skin factor
• Formation capacity 
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