
C H A P T E R 6

Working with time: interrupts,
counters and timers

Apart from the lucky few, our daily lives are ruled by time. We have alarm clocks to wake us in

the morning, stopwatches to measure time duration, timers to start off single events (such as

a VCR recording) and timers to maintain periodic events (such as a house heating system

coming on at the same time every day). For the young and those who teach, the working day is

ruled by a school timetable – a complex series of timed events.

For embedded systems, time is similarly of the essence. At a simple level the system needs to

respond in a timely manner to external events. It may also need to measure time between external

events and generate time-based activity. These requirements are met primarily by two differing,

but related, features of a microcontroller: the interrupt and the counter/timer. While each is

a stand-alone element in its own right, both are so useful that they have become ubiquitous,

finding their way into many other microcontroller features. Interrupts are to be found generated by

almost every microcontroller peripheral. Counters/timers provide the timing for a range of ac-

tivity, from motor control with pulse width modulation to baud rate generation in serial com-

munications. The principles of each are introduced in this chapter and need to be understood with

care. Because they are used both at a simple level and in advanced and sophisticated ways, we

return to them on a number of occasions throughout the book. Ultimately, we find that interrupts

and counters/timers all form part of the exciting techniques that underpin real-time programming.

In this chapter you will learn about:

� Why we need interrupts and counters/timers.

� The underlying interrupt hardware structure.

� The 16F84A interrupt structure.

� How to program with interrupts.

� The underlying microcontroller counter/timer hardware structure.

� The 16F84A Timer 0 structure.

� Simple applications of the counter/timer.

� The Sleep mode.
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146 Chapter 6
If you wish you will also be able to get deeper into 16F84A interrupt issues, in particular its

interrupt latency.

6.1 The main idea – interrupts

As we know, a computer CPU is a deeply orderly entity, following the instructions of the

program one by one and doing what it is told in a precise and predictable fashion. An interrupt

disturbs this order. Coming maybe when least expected, its function is to alert the CPU in no

uncertain terms that some significant external event has happened, to stop it from what it is

doing and force it (at the greatest speed possible) to respond to what has happened. Originally

interrupts were applied to allow emergency external events, such as power failure, the system

overheating or major failure of a subsystem to get the attention of the CPU. But the concept of

interrupts was recognised as being very powerful. As time went on, more and more subsystems

gained the power to generate interrupts. This forced increasing complexity in interrupt

structures and a need to recognise that not all interrupts were equal.

To work successfully with interrupts, we need to understand both the hardware interrupt

structure and the programming techniques needed to program successfully with them. An

introduction to these now follows.
6.1.1 Interrupt structures

Different microcontrollers have rather different interrupt structures. Inevitably they have

more than one interrupt source, usually with some internally generated and others external. A

generic structure, which illustrates the main hardware principles, is shown in Figure 6.1. On

the left we see one of several sources, ‘Interrupt X’. If an interrupt occurs, it sets an S–R

bistable. The occurrence of the interrupt, even if it is only momentary, is thus recorded. The

output of the bistable, the latched version of the interrupt, is called the ‘interrupt flag’. This is

then gated with an enable signal, ‘Interrupt X Enable’. If this is high, then the interrupt signal

progresses to an OR gate. If it is low, the interrupt signal gets no further. If enabled, it is
S Q

Interrupt
flag*

Interrupt X

Interrupt X Enable*

Other
maskable
interrupts

Global Interrupt Enable*

Non-maskable 

interrupt 

Interrupt
inputs to
CPU

R(Reset by CPU
or program)

* bits in a Special Function Register

Replicated for all other maskable interrupts

Figure 6.1: A simple generic interrupt structure
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ORed with other enabled interrupt inputs of the microcontroller. The OR gate output will go

high if any interrupt input is high. There is then a further gating of the OR gate output,

this time with a ‘Global Interrupt Enable’. Only if that value is high can any interrupt signal

reach the CPU. When the CPU has responded to an interrupt, it is necessary to clear the

interrupt flag. In some processors this is done automatically by the CPU, in others it must be

done within the program.

The action of disabling an interrupt is sometimes called ‘masking’. It seems strange, however,

to be able to switch off a capability which is so important and which is meant to be there to

report emergencies. Therefore, some microcontrollers have interrupts that cannot be masked.

These are always external (i.e. not from an internal peripheral) and are used to connect to

external interrupt signals of the greatest importance. A non-maskable interrupt is shown in

Figure 6.1. As the CPU always responds if it occurs, there is less point in storing it as a flag,

and this is sometimes therefore not done.
6.1.2 The 16F84A interrupt structure

The 16F84A has four interrupt sources, all of which can be individually enabled or disabled:

� External interrupt. This is the only external interrupt input. It shares a pin with Port B,

bit 0 (Figure 2.1). It is edge triggered.

� Timer overflow. This is an interrupt caused by the Timer 0 module, which is the subject of

the second half of this chapter. It occurs when the timer’s 8-bit counter overflows.

� Port B interrupt on change. This interrupts when a change is detected on any of the

higher four bits of Port B. The mechanism was described in Section 3.4.1.

� EEPROM write complete. This interrupts when a write instruction to the EEPROM

memory is completed.

The interrupt structure is shown in Figure 6.2 and the SFR that controls it, INTCON, in

Figure 6.3. It is useful to study the two diagrams in parallel, as every bit in the INTCON

register appears in the structure logic diagram. The four sources appear labelled on the left of

Figure 6.2. When comparing this diagram with Figure 6.1, it is interesting to note the absence

of the interrupt flag flip-flops. These exist, but are not shown in the Microchip diagram. Each

source has an enable line (labelled .E) and a flag line (labelled .F).

Thus, the lines TOIF, INTF and so on are actually the interrupt flags rather than the interrupt

inputs themselves. All can be seen as bits in the INTCON register, with the exception of

the EEPROM write complete flag and enable. Note that the external interrupt is edge triggered.

The edge it responds to is controlled by the setting of the INTEDG bit of the OPTION

register (shown later, as it mainly relates to Timer 0, in Figure 6.9).
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Figure 6.2: The 16F84A interrupt structure (supplementary labels in shaded boxes added by the

author)
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As in Figure 6.1, each flag is ANDed with a corresponding Enable input (TOIE, INTE, RBIE

and EEIE). The enable bits are located in the INTCON register and can be set by the

programmer. The outputs of the four AND gates are then ORed together, before passing on

to the Global Enable gate. Interrupt flags must be cleared by manipulating their INTCON

bits in the program. The 16F84A has no non-maskable interrupt input.
Figure 6.3: The 16F84A INTCON register
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6.1.3 The CPU response to an interrupt

Let us assume that an interrupt has occurred, and both its local enable and the global enable

are set. The interrupt is therefore detected by the CPU and it executes a special section of

program called the Interrupt Service Routine (ISR). It is important to understand the un-

derlying detail of what goes on, and this is illustrated in the flow diagram of Figure 6.4. The

CPU completes the instruction it is currently executing and saves the value of the Program

Counter on the top of the Stack. Thus, it will ‘know’ where to come back to when the ISR is

complete. To avoid other interrupts possibly interrupting this interrupt, it also clears the Global

Interrupt Enable.

In the PIC 16 Series, the ISR must start at the interrupt vector, program memory location

0004 (Figure 2.4). Therefore, when an interrupt occurs, this value is loaded into the Pro-

gram Counter and program execution then continues from the reset vector. In any pro-

cessor, the ISR must end with a special ‘return from interrupt’ instruction. In the 16 Series

this is the retfie instruction. When this is detected, the CPU sets the GIE to 1, loads the

Program Counter from the top of the Stack and then resumes program execution. Thus, it

returns to the instruction which follows the instruction during which the interrupt was

detected.
Interrupt detected

Complete current instruction

Save Program Counter on Stack

Reload PC with 0004H

Continue program execution

Instruction 
is RETFIE?

No

Set GIE to 1

Load PC from Stack

Continue program execution

Yes

Clear GIE 

ISR execution starts

Main program is running

Main program continues

Figure 6.4: The 16F84A interrupt response sequence of events
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6.2 Working with interrupts

6.2.1 Programming with a single interrupt

It is comparatively easy to write simple programs with just one interrupt. For success, the

essential points to watch are:

� Start the ISR at the interrupt vector, location 0004.

� Enable the interrupt that is to be used by setting the enable bit in the INTCON register.

� Set the Global Enable bit, GIE.
Program Example 6.1: Simple interrupt application
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� Clear the interrupt flag within the ISR.

� End the ISR with a retfie instruction.

� Ensure that the interrupt source, for example Port B or Timer 0, is actually set up to

generate interrupts!

Program Example 6.1 gives a very simple interrupt example, intended for simulation. The in-

terrupt guidelines in the list above are applied. The program starts as usual at the reset vector

0000; however, the interrupt vector is now also in use. The first action of the program is to branch

over the reset vector to location start, where initialisation takes place. Within this we see the

GIE and INTE bits being set. These bit labels can be used because they appear in the 16F84A

Include File. The main program simply outputs the bit patterns 0AH and 15H to Port A in turn.

When an interrupt occurs the interrupt vector address is loaded into the Program Counter, from

where program execution continues. The first action of the ISR is to jump to location

Int_Routine. This is placed at program memory location 0080H to give clarity to the simu-

lation. The ISR simply clears Port A before clearing its interrupt flag and returning to the main

program.

Programming Exercise 6.1
Copy Program Example 6.1 from the book’s companion website into MPLAB and create
a project around it. Build the project and enable the simulator. Open a Watch window,
displaying PORTA, PORTB, INTCON and PCL. Open the Hardware Stack window
(under View) to observe the contents of the Stack. Open a new stimulus workbook (as
described in Section 4.8.1) and set Pin RB0 to Toggle. Single-step through the program,
and observe and understand the change to each observed variable on every instruction.
Now ‘fire’ the RB0 pin, setting RB0 high, and an interrupt sequence should be instigated
as you single-step further. See the Hardware Stack change, program execution transfer to
the ISR and on ISR completion the program resuming after the instruction where it was
interrupted. Fire the RB0 pin again (returning it to 0), and continue stepping. This will
cause no change to program execution, as the interrupt edge response will be positive-
edge triggered only (the INTEDG bit has been left at a Reset value of 1). Try changing the
INTEDG bit (to 0), as shown in the program, to change the edge to which the interrupt
responds.

When you have implemented the above program successfully, try inserting the errors
below into the program. They are commonly made by novices. Observe and explain the
effect.

� Fail to clear the interrupt flag by removing the instruction bcf intcon,intf.

� Terminate the ISR incorrectly by replacing retfie with return.
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6.2.2 Moving to multiple interrupts – identifying the source

Using one interrupt in a program is generally quite easy, but be warned – once we start using

more than one, interrupts can interact with each other in ways which are far from simple.

Complexity then seems to rise approximately in proportion to the square of the number of

interrupts used!

As we have seen, the 16F84A has four interrupt sources but only one interrupt vector.

Therefore, if more than one interrupt is enabled, it is not obvious at the beginning of an ISR

which interrupt has occurred. In this case the programmer must write the ISR so that at its

beginning it tests the flags of all possible interrupts and determines from this which one has

been called. An example piece of code that does this, assuming all four interrupt sources are

enabled, is shown in Program Example 6.2.

Program Example 6.2: Interrupt source identification

6.2.3 Stopping interrupts from wrecking your program 1 – context saving

Because an interrupt can occur at any time, it has the power to be extremely destructive.

Program Example 6.3 is written to illustrate this. It applies a 16-bit addition subroutine.
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For the purposes of the example, the 16-bit number 9999H is added to itself, with an

expected 17-bit result 13332H. In the subroutine, the lower two bytes, qlo and plo, are

added. Any Carry generated is then added into one of the higher bytes, and the higher two

bytes are added. An ISR is written which affects both the Carry flag and the W register, as

most ISRs would.
Program Example 6.3: Impact of interrupts
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Suppose the interrupt occurs immediately after the first subroutine movf instruction,

where the W register is holding the value of plo. The ISR changes the W register

so, when program execution returns to the subroutine, it will be with the incorrect

W register value. Suppose the interrupt occurs immediately after the first addwf

instruction. The value of the Carry bit is essential to the success of the addition, but

again is lost in the ISR.
Programming Exercise 6.2

Copy the program Int_Context from the book’s companion website into MPLAB and
create a project around it. Build the project and enable the simulator. Open a Watch
window, displaying qhi, qlo, phi, plo, rhi, rlo, STATUS and WREG. Open the Stimulus
Controller and set Pin RB0 to Toggle. Single-step through the program, and check that
the addition works correctly and the expected result is achieved. Now try inserting in-
terrupts at different points in the program. Note how at many points the occurrence of
the ISR destroys the validity of the addition’s result.
The temporary data being used in a particular activity in the CPU is called its ‘context’. In the

PIC 16 Series this includes at least the W register value and the Status register. It is clearly

important to save the context when an interrupt occurs. Some microcontrollers do this auto-

matically, but PIC 16 Series microcontrollers do not. Therefore, it is up to the programmer to

ensure that whatever context saving that is needed is done in the program.

Program Example 6.4 shows the recommended Microchip method for saving the W register

into a pre-designated memory location W_TEMP and the Status register into a location called

STATUS_TEMP. The swapf and movwf instructions are used because they do not affect any

Status register bits.

Program Example 6.4: Context saving
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Programming Exercise 6.3

Adapt the context saving shown in Program Example 6.4 and insert it into the
Int_Context program (Program Example 6.3). You will need to define memory locations
for w_temp and status_temp. Check that the program now operates correctly wherever
you force an interrupt to occur.
6.2.4 Stopping interrupts from wrecking your program 2 – critical regions and masking

We can resolve some of the problems of an interrupt occurring in a program section like the

subroutine discussed above by appropriate context saving. Unfortunately, we can’t resolve

them all, at least not just with context saving.

What if an interrupt occurred in a software delay routine, for example that of Program Ex-

ample 5.2? The delay length would be increased by the duration of the ISR, which could be

disastrous, and no amount of context saving would improve the situation.

Consider a more subtle problem. The ISR shown in Program Example 6.5 takes the word held

in rhi-rlo, calculated in the subroutine of Program Example 6.3, and outputs it to a 12-bit

digital-to-analog converter (DAC) connected to Ports A and B. We assume that the overall

program constrains the word in rhi-rlo to 12 bits. Suppose the ISR shown in Program Example

6.5 occurs during the subroutine of Example 6.3. Context saving is implemented, so should

there be a problem?

Unfortunately, there is a problem. The ISR is making use of a result that is being calculated in

a program section that it is interrupting. Suppose rlo has just been updated and not rhi when

the interrupt occurs. The ISR outputs the new value of rlo and the old one of rhi. Together,

they might make a number that has no sense, with potentially disastrous consequences.

Int_Routine
movwf W_temp ;Copy W to TEMP register,
swapf status,0 ;Swap status to be saved into W
movwf status_temp ;Save status to STATUS_TEMP register
bcf   status,5 ;ensure we are in Bank 0
movf  rhi,0 ;output higher 4 bits to DAC
movwf porta
movf  rlo,0 ;output lower 8 bits to DAC
movwf portb
swapf status_temp,0  ;Swap nibbles in STATUS_TEMP register

;and place result into W 
movwf status ;Move W into STATUS register ;set bank to original

;state
swapf W_temp,1       ;Swap nibbles in W_TEMP and place result in W_TEMP 
swapf W_temp,0       ;Swap nibbles in W_TEMP and place result into W 
bcf   intcon,intf 
retfie

Program Example 6.5: An interrupt using data calculated in the program
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Therefore, we must accept the fact that in certain program areas we will not want to accept the

intrusion of an interrupt under any circumstances, with or without context saving. We call

these ‘critical regions’. We can disable, or ‘mask’, the interrupts for their duration by

manipulating the enable bits in the INTCON register. Critical regions may include:

� times when the microcontroller is simply not readied to act on the interrupt (for

example during initialization – hence, only enable interrupts after initialization is

complete);

� time-sensitive activities, including timing loops and multi-instruction setting of outputs;

� any calculation made up of a series of instructions where the ISR makes use of the result.

By properly applying the techniques of context saving and critical regions, we can make good

use of interrupts without them displaying the more destructive side of their nature.
6.3 The main idea – counters and timers

6.3.1 The digital counter reviewed

It is very easy to make a digital counter using flip-flops. Counters can be made which count up,

count down, can be cleared back to zero, pre-loaded to a certain value, and which by the

provision of an overflow output can be cascaded with other counters. A simple example is

shown in Figure 6.5. Eight negative edge-triggered J–K bistables are interconnected, so that

the Q-output of one drives the clock input of the next. With J and K both tied to Logic 1, the

flip-flop toggles on every input negative edge. The counter holds an 8-bit binary number, made

up of the eight Q-outputs of the bistables, where Q7 is the most significant and Q0 the least

significant. It counts up by one on the negative edge of every incoming clock cycle.

The output timing diagram is shown in the lower part of the figure. It can be seen that after

one input cycle Q0 has gone to Logic 1. After 16 input cycles have been completed

(i.e. during cycle 17) the 8-bit word forms 00010000B, i.e. 16D, and after 31 cycles it forms

00011111B, i.e. 31D. When 255 input cycles have been completed the counter holds the word

11111111B, or FFH. If another input cycle comes along, then all flip-flops ripple through

to 0 and the output returns to 00000000B. The negative-going edge of Q7 can be used to

indicate that the counter has overflowed.

The counter of Figure 6.5 can be reset to zero if the clear line is activated. With a little

more complexity it is possible to add the facility to pre-load the counter with any number

desired. By so doing we gain a versatile digital subsystem which becomes the basis for

a microcontroller counter. This can be represented as in Figure 6.6. The only interconnections

of significance are the clock input, the overflow output and the 8-bit Read or Load capability,

which can be gated to share a single bi-directional data path.
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6.3.2 The counter as a timer

It is extremely useful for a microcontroller to be able to count – widgets passing on a conveyor

belt, for example, coins in a slot machine, or people going through a door. It is, however,

especially useful if it can measure time, and the counter allows us to do this.

Suppose the input signal of Figure 6.5 was a stable 1 kHz clock frequency. Then the counter

would increment exactly every 1 ms. After 16 clock cycles, exactly 16 ms would have elapsed,

after 31 cycles 31 ms and so on. By starting the clock input at a moment of choice, it is

therefore possible to measure elapsed time. The resolution of the measurement is determined
L O A D

R E A D

Clock Overflow
Counter

Figure 6.6: The digital counter in block diagram form
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by the period of the clock. In this example the resolution is 1 ms and we can’t measure

anything less than that, or a fraction of it! Again, for the 1 ms input period, the 8-bit counter

can measure up to 255 ms before overflowing. The use of counters as timers is so important

that the counter is often called a counter/timer (C/T), or simply a timer, to reflect this

importance.

An obvious application of the counter/timer is to measure the time between two ‘events’.

These events may both be externally generated. Alternatively, the first is generated by the

microcontroller and the second happens some time later, as a response. It may also be

necessary to measure the time between two pulses or the duration of a single pulse. The

general requirement is illustrated in Figure 6.7. The actual measurement seems easy – start

the counter/timer running when the first event occurs and stop it at the moment of the second.

In practice, this poses a number of challenges. For an accurate measurement, the start and

stop of the counter/timer must be perfectly synchronised with the events. The best way of

doing this is by using an interrupt. If we don’t have an interrupt, then we will have to

continuously scan the input to detect when the event occurs – in which case it’s hardly worth

using the counter/timer, as we might as well do the timing in the software. If there are two

external events on two different lines then we still have a problem as, with the PIC 16 Series,

we only have one external interrupt.

We will see a good example of this sort of time measurement in Chapter 10. We will also see

enhancements to the counter/timer that get over the problem of accurately synchronising the

start and stop of the counter/timer with the events it is measuring.



Input edge select

8-bit counter

Multiplexer selecting  
counting source 

Multiplexer
selecting  prescaler

Figure 6.8: The 16F84A Timer 0 module (supplementary labels in shaded boxes added by the
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6.3.3 The 16F84A Timer 0 module

The 16F84A Timer 0 is typical of many simple counters/timers in smaller-scale micro-

controllers. It takes an 8-bit counter like the one in Figure 6.5, connects it as an SFR in the

memory map and packages it with some useful extra features. Its block diagram representation

is shown in Figure 6.8, with the actual 8-bit counter labelled TMR0. Looking back to

Figure 2.5, we can see that this appears as register TMR0 at memory location 01 in bank 0.

Like all good microcontroller peripherals, Timer 0 is configurable, controlled by a number of

bits that appear in the OPTION register, as shown in Figure 6.9.

Looking to the left of Figure 6.8, we can see that there are two possible sources of the clock

input to the TMR0 counter. One is the RA4 pin (i.e. pin 3 of the 16F84A – see Figure 2.1).

The other is the internal instruction cycle frequency, labelled Fosc/4. The selection of the

input source is made by the multiplexer controlled by bit T0CS, which appears in the Option

register. The external input path includes the option of inverting the signal with the Exclusive

OR gate, the inversion being controlled by bit T0SE. The output of the first multiplexer

branches before reaching a second multiplexer. This selects either a direct path or the path

taken through a programmable prescaler. The choice is controlled by bit PSA of the Option

register. A complication here is that the prescaler is actually shared with the Watchdog

Timer (WDT), which we meet a little later in this chapter. For now we just need to recognise

that if PSA is set to 1, then the prescaler is assigned to the WDT and the multiplexer

selects the input path which avoids the prescaler. The prescaler itself is controlled by

bits PS2, PS1 and PS0 of the Option register. Inspection of these bits in Figure 6.9 shows

that they allow a choice of frequency divisions of the incoming clock signal. The output



Figure 6.9: The 16F84A OPTION register

160 Chapter 6
of the second multiplexer is synchronised with the internal clock, before becoming the input

to the actual counter. When the counter overflows, it sets the timer overflow flag, one of

the PIC microcontroller’s four interrupt sources, which we met in Figure 6.2.
6.4 Applying the 16F84A Timer 0, with examples using the electronic
ping-pong program

A simple counter/timer like the Timer 0 can be used for many applications. We will look at

two examples. Both are based on the electronic ping-pong program and can be readily

simulated.

6.4.1 Object or event counting

The simplest application of Timer 0 is to use it as a counter, counting pulses entering the

microcontroller through the external input. Looking at the electronic ping-pong circuit

(Appendix 2, Figure A2.1), we see that the right paddle is connected to Pin 3 of the 16F84A.

The program of Program Example 6.6 is a very simple counting example. It enables the
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counter appropriately and uses the right paddle as the counter input, continuously displaying

the current value on the LEDs connected to Port B.

To configure Timer 0, we’ll need to select its external input, i.e. T0CS ¼ 1. The input edge

that we trigger from is not too important. As there is a risk of switch bounce, however, we

will choose the edge associated with switch release, i.e. the rising edge, as there is less

likelihood of bounce. Therefore, T0SE ¼ 0. We will not want the prescaler, as we wish to

count the exact number of switch presses; therefore, PSA ¼ 1. Hence the values of PS2, PS1

and PS0 do not matter (as this application does not make use of the WDT). All Option

register bits that have not been mentioned in this paragraph are not of importance to the ping-

pong program, so will be arbitrarily set to 0. A final value for the Option register setting is

thus 00101000B.

Program Example 6.6: Using Timer 0 as a counter
This program can be run on the ping-pong hardware, in which case every press of the right

paddle causes a binary display on the play LEDs to increment by one.
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Programming Exercise 6.4

Copy the program Cntr_Demo from the book’s companion website into MPLAB and
create a project around it. Build the project and enable the simulator. Open a Watch
window, displaying PORTB and TMR0. Open the Stimulus Controller and set Pin RA4
to Pulse high, with a pulse width of one cycle. Animate the program, ‘fire’ the input pulse
and see how the Timer 0 and Port B SFRs count up.

Download the program to the pingpong hardware and run it, if you have the means to
do this.
6.4.2 Hardware-generated delays

In the original ping-pong program software-generated delays are used to time how long the

LEDs are to be illuminated. This is only acceptable in simple programs, as in software-

generated delays the CPU is doing nothing useful during the whole of the delay. Now that we

have a counter/timer at our disposal, we can use it to generate the delay and if necessary

the CPU can busy itself with other things. This seems quite simple, but a small problem

presents itself: how do we know when the delay period is up? If we have to keep checking the

timer value, then we will have made little progress. This is where the ‘interrupt on overflow’

comes into its own. If things are set up so that an interrupt is generated as the delay ends,

then we have a powerful means of creating efficient delays.

As a first step, let’s replace the 5 ms software delay subroutine in the ping-pong program with

a delay controlled by Timer 0. The internal clock is approximately 800 kHz and the instruction

cycle rate (Fosc/4) is therefore 200 kHz, or a period of 5 ms. Now with this clock frequency,

Timer 0 would count up to its maximum value (255) in 255 � 5 ms, or 1275 ms, and would

overflow on the next cycle, i.e. after 1280 ms. We can, however, make use of the prescaler here.

If the incoming signal is divided by 4 (i.e. PS2, PS1, PS0 set to 001), then Timer 0 will

overflow after 256� 4� 5 ms, or 5.120 ms. This is very close to the 5 ms we’re looking for, but

it’s not quite exact.

Although the ping-pong program does not need accurate timing, suppose we genuinely needed

a delay very close to 5 ms? Let us divide the incoming clock by 8 instead of 4, which gives

a divided frequency of 25 kHz, or a period of 40 ms. Now 125 Timer 0 input cycles will cause

a delay of 40 � 125 ms, or 5.00 ms, which is exactly our target. If we arrange for this

prescaling, and at the start of each delay pre-load Timer 0 with 256 � 125, i.e. 131D, then an

exact delay, terminated by the interrupt on overflow, is possible.

An implementation of this approach is shown in the program sections in Program Example 6.7.

This includes both the initialisation section and the revised delay subroutine. Interrupts are not



Program Example 6.7: Using Timer 0 in the ‘delay5’ subroutine

Working with time: interrupts, counters and timers 163
enabled and the subroutine determines when the delay is complete by testing the overflow

interrupt flag. The advantage to the programmer is that timing is now achieved by manipu-

lating the Timer 0 settings, rather than by adjusting the software routine. The ‘interrupt on

overflow’ has not been enabled, as it would in this instance offer little advantage. In a more

demanding program, however, the interrupt could be enabled and the time spent in the delay

used to undertake other CPU activities.
Programming Exercise 6.5

Modify the ping-pong program to include the changes given in Program Example 6.7.
Using Debugger > Settings ensure that the clock frequency is set to 800 kHz. Use the
Stopwatch facility to check the time duration of the new delay subroutine. How much do
the call, return and Timer loading instructions add to the delay? Can you fine-tune it to
improve its accuracy?

6.5 The Watchdog Timer

There is another timer in the 16F84A that we need to take note of, even though it is not

normally used in simple applications. This is the Watchdog Timer (WDT). A big danger

with any computer-based system is that the software fails in some way and that the

system locks up or becomes unresponsive. In a desktop computer such a lock-up can be

annoying and one would normally have to reboot. In an embedded system it can be

disastrous, as there may be no user to notice that there is something wrong and maybe no

user interface anyway. The WDT offers a fairly brutal ‘solution’ to this problem. It is
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a counter, internal to the microcontroller, which is continually counting up. If it ever

overflows, it forces the microcontroller into Reset (Figure 2.10). It is up to the programmer

to ensure that within the program the WDT is repeatedly cleared. This is done with the

instruction clrwdt. It is only when the program ceases to run correctly that these

instructions are no longer executed and the overflow occurs.

A WDT Reset is generally not good news for an embedded system, as all current settings

are of course destroyed and the program starts again. It is, however, better than a program

which is not running at all. Note that the WDT leaves one clue of its action behind, and that

is through the TO bit in the Status register (Figure 2.3). It is possible to test this bit towards

the beginning of a program and hence distinguish between a Power-on Reset and a WDT

Reset.

The 16F84A WDT is enabled by one of the configuration bits, as seen in Figure 2.6. Thus, it

either runs or it doesn’t for the duration of the time the microcontroller is switched on. It is

driven by an internal RC oscillator, which gives a nominal time-out period of 18 ms. This,

however, is to some extent dependent on temperature, supply voltage and variation from

device to device. It can be extended by applying the Timer 0 prescaler to it, in which case the

time-out period can be stretched up to 128 � 18 ms, or around 2.3 seconds.
6.6 Sleep mode

Although we are considering timing in this chapter, it is an appropriate moment to consider

one aspect of microcontroller operation when time is almost suspended – the Sleep mode. This

represents an important way of saving power. The microcontroller can be put into this mode by

executing the instruction SLEEP, seen in Appendix 1. Once in Sleep mode, the micro-

controller almost goes into suspended animation. The clock oscillator is switched off, the

WDT is cleared, program execution is suspended, all ports retain their current settings, and the

PD and TO bits in the Status register (Figure 2.3) are cleared and set respectively. If enabled,

the WDT continues running. Under these conditions, power consumption falls to a negligible

amount – Ref. 2.1 quotes a typical value of 1 mA, under specific ideal operating conditions.

Once asleep, the microcontroller of course needs something to wake it up again. The 16F84A

wakes from Sleep in the following situations:

� External reset through MCLR pin. While this causes a wake-up, it also resets the

microcontroller; therefore, its use seems limited to complete program restarts. It is

possible, however, to detect that the microcontroller has just been in Sleep mode, due to

the state of the PD pin in the Status register.

� WDT wake-up. The function of the WDT is a little different in Sleep. Looking at

Figure 2.10, it can be seen that the WDT is blocked from causing a reset when in
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Sleep. Instead, on overflow it just causes a wake-up from Sleep, and the

microcontroller continues program execution from the instruction following the

Sleep mode.

� Occurrence of interrupt. As Figure 6.2 indicates, any individually enabled

interrupts cause wake-up from Sleep, regardless of the state of the Global

Interrupt Enable. Timer 0 cannot, however, generate an interrupt, as the internal clock

is disabled.

On wake-up, the oscillator circuit is restarted. For any crystal oscillator mode this means that

the TOST timer, seen in Figure 2.10, is also activated. It must complete its count before

program execution can resume. Therefore, like a human being, the 16F84A takes a finite time

to wake up and be ready for action.

The Sleep mode is extremely powerful for products that must be designed in a power-

conscious way. Many devices are not continuously active when powered. If put into Sleep

when not in use, their power consumption can be dramatically reduced.
6.7 Taking things further – interrupt latency

The purpose of the interrupt is to attract the attention of the CPU quickly, but how

quickly does this actually happen? The time between the interrupt occurring and the CPU

responding to it is called the ‘latency’. The latency is dependent on certain aspects of

hardware and ultimately can also depend on the characteristics of the program running.

The timing diagram of Figure 6.10 shows how the mid-range PIC family responds to

an enabled external interrupt. The interrupt itself can be seen as a positive-going pulse on

the INT pin line. This causes the interrupt flag INTF to be set. This flag is sampled on

the Q1 cycle of the internal oscillator clock. Once this is done, the CPU has detected

the interrupt and the sequence then follows that of Figure 6.4. Two dummy cycles are

needed to save the Program Counter to the Stack, reload it with 0004H and fetch the

instruction at that address.

Programming Exercise 6.6

Working with the int_demo1 program again, set the clock frequency to 4 MHz using
Debugger > Settings. Enable the Stopwatch (under Debugger) and single-step
through the program. See how the Stopwatch updates elapsed time in a predictable
way. Now instigate the interrupt. Notice how the Stopwatch records a latency of
two instruction cycles. At the end of the ISR see that the retfie instruction also takes
two cycles.
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Summary

� Interrupts and counters/timers are important hardware features of almost all

microcontrollers.

� They both carry a number of important hardware and software concepts, which must be

understood.

� The basic techniques of using interrupts and counters/timers have been introduced in this

chapter. There is considerably increased sophistication in their use in more advanced

applications.

Questions and exercises

Try to complete Programming Exercises 6.1 to 6.6 and the questions below.

1. (a) The INTCON register in a certain 16F84A application is found to read 10110000.

What interrupts are enabled?

(b) As the program executes, it is found to read 00110010, 00110000, 10110000 in

sequence. Explain the likely cause of each of these changes.
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2. An inexperienced programmer has written the code shown below for a 16F84A micro-

controller, where the interrupt source is Timer 0 overflow. Identify all errors and rewrite the

program fragment correctly.
3. The Timer 0 module of a 16F84A is initiated by loading the OPTION register with

value 00000011. The oscillator frequency is 8 MHz.

(a) Under these conditions, what is the frequency at the input to the Timer?

(b) If the counter is initially cleared to zero, how long does it take before it first

overflows?

(c) If INTCON was initially cleared to 0, what is its value immediately after this

overflow occurs?

4. A machine counts envelopes which are being packaged in packs of 150. The machine is

controlled by a PIC 16F84A. A sensor connected to the RA4/T0CK1 pin produces a logic

pulse every time an envelope passes it.

(a) Describe how you would configure the Timer 0 to count the envelopes. Indicate

what value you would set in the OPTION register.

(b) Explain what strategy could be used to allow the microcontroller program to

detect when the number 150 had been reached.

5. In an application using the 16F84A, a regular timed interrupt is required. The clock

oscillator frequency is 4 MHz and an interrupt frequency in the region of every 2 ms is

required. Describe how you would configure the Timer 0 module.
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6. The following program fragment is for a 16F84A-based system, with a clock frequency of

10 MHz. Explain in as much detail as possible how the counter/timer and interrupts are

being used.

7. An application requires use of the WDT, with timeout period around 150 ms. Describe all

settings which must be used in order to achieve this. If a timeout does occur, how can this

be detected by the program?
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